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Abstract
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JEL-Classification: J24, O33, F16, R11

Keywords: Automation, Labor Market Institutions, Skill Upgrading

∗We thank Daron Acemoglu for suggestions and very helpful feedback. We are grateful to David Autor, Uwe
Blien, Georg Graetz, Xavier Jaravel, Michal Kolesár, Attila Lindner, Guy Michaels, Gianmarco Ottaviano,
Pascual Restrepo, Daniel Sturm, Danny Yagan, Fabrizio Zilibotti and many seminar audiences for helpful
comments. We thank Hans Ludsteck for answering our data questions. We received financial support from the
DFG-priority program 1764 “The German Labour Market in a Globalised World - Challenges through Trade,
Technology, and Demographics”.
†University of Würzburg and iab. wolfgang.dauth@uni-wuerzburg.de
‡University of Konstanz. sebastian.findeisen@uni-konstanz.de
§DICE Heinrich-Heine-Universität Düsseldorf. suedekum@dice.hhu.de
¶DICE Heinrich-Heine-Universität Düsseldorf.



1 Introduction

How have new automation and robotics technologies transformed the labor market? Theoret-

ical work on this question has identified two competing high-level effects for employment and

wages (Acemoglu and Restrepo, 2018b; Acemoglu and Restrepo, 2019). At first, the adop-

tion of automation technologies will cause a displacement effect, as robots take over in jobs

or tasks performed by labor. Sooner or later, however, productivity gains will lead to new

jobs elsewhere in the economy. Careful empirical work is now needed to provide evidence on

which effect dominates. Furthermore, understanding and examining the mechanisms behind

the displacement and productivity effects is crucial for a wide range of questions high on the

agenda for economists and policymakers alike. First, displacement can trigger painful ad-

justment processes and large earnings losses (Jacobson, LaLonde, and Sullivan, 1993), which

might imply a bigger role for policy in targeting those displaced by automation technologies.

Second, incumbent workers and also young labor market entrants might have to be re-trained

or acquire more education in order to be able to transition to new tasks and jobs created

by the productivity effect. Finally, a reasonable prior is that different labor market institu-

tions might mediate the displacement/productivity effects very differently, providing potential

lessons how to maximize the positive impacts of automation.

In this paper, we examine those mechanisms and how firms and individual workers adjust

to automation exposure. The labor replacing technology we focus on are industrial robots,

primarily used in the manufacturing sector. Following significant technical advances, robotic

capabilities have made great strides in limiting the need for human intervention while au-

tonomously operating production processes. According to the International Federation of

Robotics (2016), the stock of industrial robots rose by a factor of five between 1993 and 2015

in North America, Europe, and Asia. An estimated 1.5 million industrial robots are currently

used. A large number of industries have thus already undergone dramatic changes in the

organization of production in the last two decades.

We use Germany as our "laboratory" and make use of local labor market variation as our

main source. It is clear that Germany provides an important benchmark case when it comes

to the equilibrium effects of robots and how labor markets adjust to increasing automation.

Figure 1 shows the penetration of robots, dividing the stock of robots by the number of workers

in different regions of the world between 1994 and 2014. Korea (the world leader), Japan, and

Germany are technologically much more advanced in robotics than other countries in Europe

and the United States. In addition, to get a solid understanding of the adjustment process

and to grasp the incidence of automation, one needs high-quality longitudinal data, following

workers over time across firms, occupations, and sectors. For Germany, we can leverage that

matched employer-employee data extracted from social security records exist.
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Figure 1: Robot penetration, 1994-2014

Notes: Europe = Germany, France, Italy, Spain, Finland, Sweden, Norway, UK. Robot penetration is the robot stock relative to
the dependent employment in full-time equivalents (FTE). Employment data from the IAB for Germany and from OECD.Stat
for the remaining countries. Dependent employment in Korea and Japan was imputed from total employment and the ratio of
dependent to total employment in the European countries, where data on both dependent and total employment is available.
Source: IFR, OECD, and BEH V10.01.00, own calculations.

The first part of the paper replicates the strategy of Acemoglu and Restrepo (2019), who have

found alarmingly negative impacts on labor demand in the US. We find no such negative effects

on total employment but show that this masks the presence of considerable displacement and

reallocation effects. Within manufacturing, robot exposure leads to fewer jobs, but, new labor

demand in the service sector – in particular local services used by other businesses – leads

to an offsetting force. We present new pieces of evidence using data on productivity and

the labor share at the local labor market level. They corroborate the presence of substantial

productivity/reallocation effects and displacement effects, manifesting themselves in a lower

labor share.1 We then extend the literature in four ways, which we describe now.

The second main contribution is a complete characterization of the incidence of the dis-

placement and reallocation effects. The main finding is that the majority of the incidence falls

on young workers, just entering the labor force. They face lower labor demand in automating

industries and adjust by taking jobs in the expanding service sector. Incumbent workers,

maybe paradoxically at first glance, actually see an increase in their plant tenure in response

to automation.

Our third main contribution shows that this last effect – i.e. automation causing more

stable employment within firms – is driven by workers taking on new jobs (measured by
1Autor and Salomons (2018) show in a cross-country and cross-industry design that TFP growth is asso-

ciated with a reduction in the labor share, consistent with these findings.
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occupations) in their original plants. Displacement from old tasks, hence, takes place, but is

(immediately) offset by taking on new tasks for the same employer. There are three measures

we use, which indicate the new jobs are of higher quality than the old ones for incumbents:

the new occupations pay higher wages, are characterized by a higher share of abstract instead

of routine tasks, and the college share is higher. Young workers in local labor markets with

more exposure to automation substitute away from vocational training towards colleges and

universities.

Fourth, we divide local labor markets, using the vote share of the German Social Democratic

Party as a proxy for the strength of labor market institutions favoring labor. We work under

the hypothesis that stronger labor market protections for workers should manifest themselves

in smaller displacement effects, but also reduced productivity gains from automation. Results

from sample splits along the (imperfect) measure support this hypothesis. Robots reduce the

labor share and increase productivity in regions with weak worker protections.

In the fifth and last contribution, we shift the focus from local labor market adjustments

to the individual worker. This complements the previous models because it allows to directly

study the effects of automation on earnings and wages using a more compelling design. Com-

paring wage or earnings growth across local labor markets, in contrast, can lead to biased

results because automation changes the composition of employed workers. At the individual

level, we can follow the same workers, who start competing with industrial robots, over time

and across all possible margins of adjustments (plants, occupations, sectors). One result is that

average earnings are hardly affected. However, we find that automation creates substantial

earnings inequality: workers who are retained by their plants, experienced positive earnings

effects. Workers which are forced to switch plants, industries, or leave manufacturing see

significant earnings losses. Finally, we show how industrial robots have benefited workers in

occupations with complementary tasks like, e.g. managers or technical and natural scientists,

while hurting those in routine intensive tasks like machine operators.

The characterizing attribute of automation and robotics is the high substitutability with

human labor in some tasks. The theoretical implications of automation for wages, employment,

productivity, and other outcomes have been studied by Acemoglu and Restrepo (2018b),

Acemoglu and Restrepo (2019), and Moll, Restrepo, and Rachel (2019).2 The important

empirical paper by Acemoglu and Restrepo (2019) has documented strong negative effects

for wages and employment across US commuting zones, implying a strong displacement force

and productivity effects, which do not seem to lead to more employment or wage increases

elsewhere. Our point of departure is the adoption of the empirical strategy developed by

Acemoglu and Restrepo (2019). Quantitatively, we also find significant displacement effects,

although around 50% smaller on average. The key difference here is that we additionally
2This active literature builds on older papers, which highlighted the usefulness of the task framework to

explain a variety of empirical phenomena concerning the distribution of wages and employment – see Acemoglu
and Autor (2011) for an exhaustive survey.
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identify significant and offsetting reallocation effects. Concerning the displacement effect, we

only find a negative impact of robot exposure on the labor share and labor demand in local

labor markets with weaker protections for labor (as measured by the strength of workers’ rights

parties). This hints at the potential importance of labor market institutions in explaining

differences in the strength of displacement also across countries.

The use of data assembled by the International Federation of Robotics (IFR) originates

with the innovative paper by Graetz and Michaels (2018). Consistent with our results, they

uncover positive productivity effects and zero effects on total employment, using variation

in robot usage across industries in different countries. However, as our analysis shows, the

zero employment effect can mask substantial displacement and reallocation effects. We com-

plement Graetz and Michaels (2018) (and also Acemoglu and Restrepo, 2019), by leveraging

administrative labor market data as the first study. We can, therefore, study the mechanisms

how automation affects labor markets; in particular, if workers separate from firms, how the

set of tasks carried out by exposed workers evolves in response to automation, and what role

the transitions of individual workers across industries and sectors play.

An important part of the adjustment process to automation and robots is the skill upgrading

process, as our evidence shows. Changes in the demand for high-skilled workers also feature

prominently role in the polarization literature (Michaels, Natraj, and van Reenen, 2014; Autor

and Dorn, 2013; Goos, Manning, and Salomons, 2014). We document direct and indirect

evidence for two margins of human capital adjustments to automation: within the plant for

workers who are retained in the face of automation and for young labor market entrants. The

first channel of within firm upgrading is consistent with the famous plant-level study by Bartel,

Ichniowski, and Shaw (2007) on American valve-makers. They chronicle how the adoption of

new IT-enhanced capital equipment leads to increases in the skill requirements of machine

operators and a transition from routine to abstract/cognitive tasks.3 Finally, our analysis

reveals that the reallocation effect is driven by increased employment in the business service

sector, showing that the spillovers seem to operate locally through firms expanding their

demand for complementary tasks. Relatedly, Helm (2019) also finds positive local spillovers

of export shocks across German labor markets, consistent with agglomeration economies.4

Section 2 describes our empirical approach and the data. Section 3 studies the impact of

robots on equilibrium employment, the labor share, and productivity across local labor mar-

kets. Sections 4 and 5 investigate adjustment mechanisms. Section 6 studies the adjustment

process of individual workers. Section 7 concludes.
3Notably, the plants in the study accompanied the transition process with the adoption of new human

resource practices to support these skills.
4While automation creates productivity growth – see our evidence on this in Section 3 – it also coin-

cides with displacement. This presumably counters agglomeration forces and explains why one should expect
different effects on agglomeration of automation than for positive trade shocks.
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2 Data and Methodology

2.1 Administrative Labor Market Data

Our main source is administrative German labor market data provided by the Institute for

Employment Research (IAB) at the German Federal Employment Agency. Specifically, we

use data from the Employee History (Beschäftigtenhistorik – BEH, Version V10.01.00). The

raw version of the BEH is a spell-dataset of the complete job histories of the universe of

private workers from 1978 to 2014, excluding the self employed and sworn civil servants.

Eastern Germany enters the data in 1992. We use a simplified version of this dataset that

contains only one observation for each individual and year, pertaining to the spell of the

highest paid job that stretches over June 30th of a given year. We also drop observations on

marginal jobs since those are only included in the data from 1999 onwards. The individual

level information contains information on gender, year of birth, educational attainment, a

unique plant-id, as well as codes for industries workplace locations, and occupations.5 This

allows us to aggregate the dataset to the county level and obtain a precise picture on the size,

the industry composition, and the workforce characteristics of local labor markets. Moreover,

the worker level panel structure of the dataset allows us to observe the mobility patterns of

individuals as they enter the labor market, move between jobs, firms, industries, and regions

and finally exit the labor market. As described below, we mainly work at the local labor

market level. Our main outcome is the percentage change in a county’s employment. We

construct this from the aggregate worker counts on June 30 of the start year 1994 and end

year 2014, where part-time workers are weighted by 0.5 to get a measure for full-time equivalent

employment. The information on the industry of the workplace plant allows us to construct

this variable separately for the manufacturing and non-manufacturing sectors. The advantage

of using percentage changes rather than the log-difference is that this growth rate can be

additively decomposed into the contributions of various groups defined by worker mobility,

such as workers who enter the labor market, who stay with their original plant, who move to

a different plant in the same industry, etc.

Our second outcome variable is the log change in average wages. To construct this variable,

we first impute the individual wages, which are censored at the social security contribution

ceiling, using a procedure suggested by Card, Heining, and Kline (2013). We then compute the

average daily wage for full-time workers on June 30 of the start and end year for demographic

cells defined by gender, three age groups (below 30, 30 to 44, 45 or more years old), and three

education groups (no or unknown degree, vocational training degree, university degree). A

further dependent variable is the total yearly wagebill, which is 365 times the individual daily

wage, aggregated to the county level. To compare our results to the findings of Acemoglu

and Restrepo (2019), we also construct the change in the employment to population ratio as a
5We distinguish between 102 2/3 digit NACE Rev. 2 industries, 402 counties, and 54 occupational fields.
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further outcome variable. The employment numbers again stem from the aggregate BEH data,

while population counts stem from the German Federal Institute for Research on Building,

Urban Affairs and Spatial Development (BBSR). Two final outcome variables stem from the

German Federal Statistical Office and relate to the productivity of the regional economy.

These are the log change in GDP per worker and the percentage point change in the total

employee compensation (Arbeitnehmerentgelte) relative to total GDP. Since this data is only

available from 2000 onwards, these two measures are constructed as changes between 2000

and 2014.

2.2 Robot Usage

We combine our administrative labor market data set with data on the stock of robots for 25

industries in 50 countries over the period from 1994 to 2014 from the International Federation

of Robotics (IFR). This data set has been used before by Graetz and Michaels (2018) in

a cross-country study at the industry level and by Acemoglu and Restrepo (2019) for the

US. A robot in this data is defined as an “automatically controlled, re-programmable, and

multipurpose machine”. As explained in more detail in International Federation of Robotics

(2016), this means that robots are “fully autonomous machines that do not need a human

operator and that can be programmed to perform several manual tasks such as welding,

painting, assembling, handling materials, or packaging.” Single-purpose machines such as

elevators or transportation bands are, by contrast, not robots in this definition, as they cannot

be reprogrammed to perform other tasks, require a human operator, or both. These data are

based on yearly surveys of robot suppliers and capture around 90 % of the world market.

The information is broken down at the industry level.6 The industry classification of this data

conforms to 2-digit ISIC Rev. 4 codes, where 3-digit information is available for manufacturing

of electronic devices, electrical equipment, and motor vehicles. Since our administrative data

has time-consistent NACE Rev. 2 industry codes, which correspond to the ISIC Rev. 4 codes

at the 2/3-digit level, both datasets can be matched without using any further crosswalk.7

The 25 industries consist of 20 manufacturing industries, agriculture, mining, supply, con-

struction, and education. Appendix Figure A.1 illustrates the change in the number of robots

per thousand workers in all 25 industries, and as an interesting comparison, we also present

the US numbers here. By far the strongest increase can be observed in the different branches

of the automobile industry (motor vehicles, auto bodies and parts). Here, more than 100 addi-

tional robots were installed per thousand workers in 2014 compared to 1994. Other industries
6But data availability differs across countries but coverage is comprehensive for Germany. As Graetz and

Michaels (2018), we do not use the IFR industries all other manufacturing, all other non-manufacturing, and
unspecified. Those categories cover less than 5% of the total robot stock in Germany.

7Data used for a previous version of the paper (Dauth, Findeisen, Suedekum, and Wößner, 2018) only had
time consistent NACE Rev. 1 codes. This required us to construct a crosswalk from the IFR classification to
the classification of the labor market data, where we apportioned ambiguous cases according to employment
shares. The results were qualitatively very similar.
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that became vastly more robot-intensive include rubber and plastic products, electronic com-

ponents, and domestic appliances. On the other side of the spectrum we find cases where

robot usage has hardly changed, and sometimes (e.g., in manufacturing of instruments for

measuring) it even decreased over time. In non-manufacturing industries, robots are used

much less than in manufacturing.

2.3 Local Labor Market Approach

In this paper, we are interested in how the labor market and its main actors, firms and

workers, adjust to increasing automation possibilities. Our research design is motivated by the

important paper on the impact of robots on the US labor market by Acemoglu and Restrepo

(2019), who also provide a theoretical micro foundation. This empirical approach bases on

the fact that a country’s local labor markets differ markedly with respect to their industry

composition. These differences create differences in the exposure to technological change in

the form of industrial robots.8 The regional perspective allows us to observe equilibrium

adjustments and spillovers from directly affected to indirectly affected industries.9

Following Acemoglu and Restrepo (2019), our main variable of interest, the change in robot

exposure in region r, is constructed as:

∆robotsr =
J∑

j=1

(
empjr

empr

× ∆robotsj
empj

)
with J = 25. (1)

The term ∆robotsj =
∆robotsj
empj

measures the national industry robot adoption as the increase

in the robot count in industry j relative to its workforce size in the base year 1994. We

allocate this industry-level exposure to regions according to their shares of national industry

employment by multiplying ∆robotsj with empjr, which is the initial employment in industry-

region cell jr. For each local labor market r, we sum the exposures of all local industries and

scale it by the region’s total employment empr, also measured in the base year 1994.

This measure is a typical shift-share variable where an industry-level shock is apportioned

across regions. In a recent paper, Adão, Kolesár, and Morales (2019) point out that such

an explanatory variable can cause problems with statistical inference: Regions with similar

industry structures are likely to have correlated error terms, which means that conventional

standard errors may be underestimated. Adão, Kolesár, and Morales (2019) propose to ac-

count for this by calculating standard errors in a fashion similar to cluster-robust standard

errors, where the correlation structure of the error terms is represented by a matrix of regional
8Faber (2019) extends this approach and regresses employment changes in Mexican labor markets on an

adjusted measure of exposure to robots adopted in other countries, US robots in his study.
9As is widely discussed in the literature, regional difference-in-difference designs have well-known limita-

tions when it comes to gauging absolute or national impacts. But, relative to other structural approaches, the
design offers more transparent and clearer identification. The results from various strands of literature show
that many equilibrium adjustments take indeed place at the local labor market level (Moretti, 2011).
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industry shares rather than by discrete clusters. We adopt their construction of robust stan-

dard errors and also apply their adjustment for small industry numbers by imposing the null

hypothesis of the true coefficient being zero.10

The identification of the effects of robots on the labor market builds on the assumption

that differences in robot exposure across industries are generated because robots have become

better utilizable in some industries than in others. However, the pattern of robot exposure

in Germany may be the result of domestic industry-specific demand shocks in Germany. To

address this endogeneity concern, we also apply the instrumental variable strategy proposed

by Acemoglu and Restrepo (2019). In this approach, we employ robot adoptions across in-

dustries in other high-income countries as an instrument for German robot exposure.11 More

specifically, we construct the instrumental variables analogously to equation 1 but use the

increases in the robot count in the same set of industries in each country and use employment

counts from 1984 for normalization and apportioning across regions.12 Figure 2 summarizes

our empirical approach. The horizontal axis shows the variation of the regional robot exposure,

conditional on regional employment shares in nine broad industry groups and federal state

dummies. The highest ranking regions are Wolfsburg, Dingolfing-Landau, and Ingolstadt,

which are heavily concentrated in the automotive industry (Volkswagen, Audi, and BMW

produce there, respectively). In our empirical analysis we will pay attention to the special

role of the automobile industry in robustness checks. But also aside from those extremes, the

variation across regions is substantial. There is no positive relation with employment growth.

In our empirical analysis in Section 3, we discuss this result in more detail.

2.4 Descriptive Overview

Table 1 provides a descriptive overview over the data we use for the region level regressions.

The average region saw a slight decline in employment. When weighting by the number of

full-time equivalent jobs in 1994, this decline becomes sharper, which demonstrates that larger

regions declined more strongly.13 The overall decline stems mostly from the declining manu-

facturing sector, which has not been compensated by growth of non-manufacturing industries.
10The exact procedure is laid out in Remarks 5 and 6 in Adão, Kolesár, and Morales (2019). We thank

Michal Kolesár for very valuable advice how to adapt their standard error adjustment for the overidentified
IV case.

11See Autor, Dorn, and Hanson (2013) and Bloom, Draca, and van Reenen (2016) for similar approaches to
study the effects of Chinese import competition. The validity of this approach hinges on the assumption that
the industry pattern of robot adoption is an exogenous shock, while the allocation of industries across regions
may be endogenous (see Borusyak, Hull, and Jaravel, 2018, for technical details). One way to verify this is to
rule out that there is a correlation of pre-trends in the outcome variables and current robot adoption, which
we do in Appendix Table A.2.

12We construct one instrument for each country k = (Spain, Finland, France, Italy, Norway, Sweden, and UK)
and estimate an over-identified model. In a further robustness check, we also aggregate the robot exposures
of all k countries to build a single instrument in a just identified 2SLS model. Notice that it is not possible
to use time lags for East German regions; here we are confined to use 1994 in the deflator.

13Note that this picture changes when part-time jobs are not weighted down. In this case, the growth rate
of the total number of jobs is positive.
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Figure 2: Region-level exposure to robots and employment growth.

Notes: The figure displays the correlation of the increase in exposure to robots (conditional on regional employment shares in
nine broad industry groups and federal state dummies) and the growth rate of full-time equivalent jobs between 1994 and 2014
at the level of 402 German local labor markets.
Sources: IFR and BEH V10.01.00, own calculations.

Wages (deflated to 2010 Euros) have increased on average, but more strongly in the manufac-

turing sector than in other sectors. These insights are also reflected in the changes of the total

wagebill (the product of employment and wage) and the employment to population ratio. The

average regional GDP has increased, which reflects the overall productivity growth during the

time period, while the share of labor incomes relative to GDP has declined.

Panel B of this table presents averages and standard deviations of control variables. We

control for the shares on women, foreigners, workers 50 or older, workers with a college degree

in total employment, as well as the employment shares of nine broad industry categories. In

our empirical analysis we also disentangle robots from two other major economic shocks that

have affected Germany since the beginning of the 1990s: The increasing international trade

with China and Eastern Europe and increasing investments in information and communica-

tion technologies (ICT). Both may have contributed to the probability of displacement for

workers while others might have benefitted from these developments, thus leading to hetero-

geneous wage and employment effects for different individuals. We therefore use data from

the UN Comtrade database and EU KLEMS on industry level net-exports and ICT invest-
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ment, respectively, to construct two further shift-share variables, which both have positive

averages.14

Finally, we report the means and deciles of the measure of robot exposure in Panel C. In

the average region, the number of robots has increased by around 4.6 robots per 1000 workers.

However, as shown in Figure 2, the distribution is skewed to the right, with a handful of very

large values.

Table 1: Summary statistics, region level 1994-2014.

unweighted weighted

observations 402 23,884,076

mean ( sd ) mean ( sd )

[A] Outcomes

% change in total employment -0.145 ( 18.181 ) -1.860 ( 16.080 )

% change in manuf. employment -9.312 ( 25.517 ) -16.408 ( 23.744 )

% change in non-manuf. employment 5.872 ( 22.738 ) 5.031 ( 21.041 )

100 x ln-change in average wage 32.640 ( 10.022 ) 32.751 ( 9.468 )

100 x ln-change in average wage, manuf. 40.041 ( 15.728 ) 40.512 ( 14.234 )

100 x ln-change in average wage, non-manuf. 28.896 ( 11.715 ) 29.516 ( 11.134 )

100 x ln-change in total wagebill 37.968 ( 18.856 ) 37.310 ( 16.921 )

100 x ln-change in total wagebill, manuf. 33.462 ( 32.570 ) 26.726 ( 31.537 )

100 x ln-change in total wagebill, non-manuf. 39.232 ( 20.952 ) 40.286 ( 19.783 )

%-point change in emp/pop-ratio -0.116 ( 3.656 ) -0.783 ( 3.537 )

%-point change in emp/pop-ratio, manuf. -0.816 ( 2.332 ) -1.378 ( 2.284 )

%-point change in emp/pop-ratio, non-manuf. 0.700 ( 3.310 ) 0.595 ( 3.320 )

100 x ln-change in GDP per worker 46.529 ( 21.149 ) 43.455 ( 19.419 )

%-point change in labor share -12.754 ( 6.893 ) -11.155 ( 6.560 )

[B] Control variables

% female 34.715 ( 4.674 ) 35.155 ( 4.706 )

% foreign 6.981 ( 4.782 ) 8.071 ( 5.147 )

% age ≥ 50 years 20.101 ( 2.366 ) 21.192 ( 2.450 )

% unskilled 11.063 ( 4.435 ) 10.794 ( 4.218 )

% vocational training 80.296 ( 4.117 ) 78.220 ( 4.851 )

% university degree 7.956 ( 3.965 ) 10.154 ( 4.592 )

% manufacturing 30.473 ( 12.559 ) 27.772 ( 12.881 )

% food products 3.443 ( 2.076 ) 2.814 ( 1.752 )

% consumer goods 4.609 ( 4.012 ) 3.876 ( 3.494 )

% industrial goods 11.846 ( 7.516 ) 10.491 ( 7.725 )

14For the measurement of trade exposure, we closely follow Dauth, Findeisen, and Suedekum (2017) and
Dauth, Findeisen, and Suedekum (2019), who compute the increase in German net exports vis-à-vis China
and 21 Eastern European countries over the period 1994-2014 for every manufacturing industry j using UN
Comtrade data, normalized by the initial wage bill to account for industry size. For ICT, we exploit information
about installed equipment at the industry level as provided in the EU KLEMS database. It is defined as the
change in real gross fixed capital formation volume per worker for computing and communications equipment
from 1994 to 2014.
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Table 1: Summary statistics, region level (continued).

unweighted weighted

mean ( sd ) mean ( sd )

% capital goods 11.048 ( 8.733 ) 11.068 ( 8.315 )

% construction 13.562 ( 4.717 ) 12.514 ( 4.773 )

% maintenance; hotel & catering 19.231 ( 4.469 ) 19.594 ( 4.193 )

% services 14.186 ( 5.271 ) 17.908 ( 7.864 )

% public sector 19.913 ( 6.397 ) 19.963 ( 6.312 )

dummy, 1=north 0.159 ( 0.366 ) 0.149 ( 0.357 )

dummy, 1=south 0.348 ( 0.477 ) 0.282 ( 0.451 )

dummy, 1=east 0.192 ( 0.394 ) 0.230 ( 0.421 )

∆ net exports in 1000 e per worker 0.956 ( 3.146 ) 1.002 ( 2.758 )

∆ ICT equipment in e per worker 661.942 ( 157.081 ) 733.603 ( 185.298 )

[C] Exposure to robots

∆ robots per 1000 workers 4.617 ( 8.028 ) 4.642 ( 7.808 )

p10-p90 interval [ 0.982 ; 8.527 ] [ 0.982 ; 8.527 ]

p25-p75 interval [ 1.438 ; 4.540 ] [ 1.394 ; 5.108 ]

Notes: Summary statistics of region level variables. In Columns 2 and 3, the data is weighted by full-time-equivalent

number of jobs in 1994. Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

2.5 Regressions Models

In Sections 3 to 5 we estimate models of the following form at the local labor market level:

∆Yr = α · x′r + β1 ·∆robotsr + β2 ·∆trader + β3 ·∆ICTr + φREG(r) + εr. (2)

We regress a change – sometimes a percentage change – of an outcome variable, such as total

employment, manufacturing employment, the employment-to-population ratio, or the labor

share, over the period 1994-2014, on the change in the number of robots per worker (i.e., on

∆robotsr as defined in (1)). In the vector x′r we control for detailed demographic characteristics

of the local workforce (such as age, gender, and qualification) in levels, aggregated up from

the universe of individual social security records. To avoid contamination by the endogenous

adjustment of the local labor force after the shock, we use levels before the start of the periods

and not changes. We also include controls for the employment shares of nine broadly defined

industry groups. Moreover, we add four broad region dummies, and we add the local exposures

to net exports and ICT specifications.

As discussed above in Section 2.3, for inference we apply the method proposed by Adão,

Kolesár, and Morales (2019). In the tables, we label them shift-share standard errors. We
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additionally present standard errors which are calculated in a conventional way, using 50

clusters which represent a higher geographical aggregation of local labor markets.15 On average

the shift-share standard errors are larger and make the inference more conservative.

3 Employment Effects, the Labor Share, and Productivity

At the very start of our analysis, we begin with results for employment, following Acemoglu

and Restrepo (2019). We then separate the effects on employment, wage, wage bills, and

employment-to-population ratios across sectors. The end of the section investigates their

robustness.

3.1 Employment Effects

We first look at employment changes in percentage terms in Table 2 using OLS regressions

in Panel A.16 We include a separate row for the shift-share standard errors using the method

proposed by Adão, Kolesár, and Morales (2019). Standard errors calculated in the more

conventional way allowing for 50 regional clusters are presented in parentheses below the

estimates.

Column 1 presents a parsimonious specification (with the initial manufacturing and regional

dummies as the only additional control variables). The estimated effect is positive but very

small and statistically insignificant. Quantitatively, comparing a local labor market at the 75th

percentile of exposure to a local labor market at the 25th percentile, the magnitudes imply that

the 75th percentile labor market experiences 0.155% points ([4.540 − 1.438] × 0.05 = 0.155)

higher employment growth or around 100 more (full-time equivalent) jobs for an average

region.

The estimates stay small and statistically insignificant as we enrich the specifications. First,

as there may be more fine-grained industry trends within the manufacturing sector, which are

correlated with employment outcomes and robot installations, we next include the initial

employment shares of nine industry groups instead of the overall manufacturing share. The

coefficient in column 2 changes signs but importantly stays close to zero.

Column 3 adds the trade exposure of local labor markets, using exports and imports with

Eastern Europe and China, as described in Section 2.4.17 Column 4 additionally includes

exposure to ICT investments. The inclusion of both variables clearly has a visible effect on
15These 50 clusters are highly aggregated labor market regions defined for use in German regional policy.

Most economic interactions should be confined to those areas.
16Using changes in log employment yields very similar results. We prefer the percentage changes since they

allow for a clean additive decomposition into various channels. This will be the focus of Section 4. As an
additional employment measure, we will also use the employment-to-population ratio in the next subsection.

17As is well known, Germany is a very export-oriented economy. If export intensive industries also rely
more heavily on robots, this might alleviate possible job losses from technological change. Conversely, robots
might have lowered production costs and thus spurred demand for German products.
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Table 2: Robot Exposure and Employment.

Dependent variable:
% change in total employment between 1994 and 2014

(1) (2) (3) (4)

[A] OLS

4 robots per 1000 workers 0.0530 -0.0396 -0.0665 0.0858
(0.106) (0.125) (0.121) (0.122)
[0.089] [0.121] [0.124] [0.167]

% manufacturing -0.1107
(0.173)

% food products 2.5142 2.4864 2.4233
(0.480) (0.480) (0.458)

% consumer goods 0.4912 0.5671 0.5389
(0.329) (0.335) (0.321)

% industrial goods 0.5823 0.5529 0.5457
(0.292) (0.299) (0.280)

% capital goods 0.9398 0.9059 0.9126
(0.287) (0.296) (0.278)

% construction 1.0598 1.0437 1.0624
(0.312) (0.317) (0.297)

% consumer services 1.5169 1.5114 1.6461
(0.372) (0.377) (0.365)

% business services 0.4782 0.4730 0.8484
(0.306) (0.308) (0.280)

% public sector 0.9281 0.9206 1.1057
(0.283) (0.286) (0.273)

4 net exports in 1000 e per worker 0.3735 0.3593
(0.230) (0.227)

4 ICT equip. in 1000 e per worker -0.0251
(0.007)

R2 0.506 0.570 0.573 0.586

[B] 2SLS

4 robots per 1000 workers 0.0660 -0.0559 -0.0811 0.0675
(0.105) (0.132) (0.129) (0.137)
[0.085] [0.139] [0.141] [0.181]

Kleibergen-Paap weak ID test 562.668 391.407 383.098 378.041
Hansen J p-value 0.432 0.223 0.217 0.203

Notes: N = 402 local labor market regions (Landkreise und kreisfreie Staedte). Regressions of total employment growth (in %)
on the change in robot exposure between 1994 and 2014. All specifications include a constant, broad region dummies indicating
if the region is located in the north, west, south, or east of Germany and demographic control variables, measured in the base
year 1994. The demographic control variables are the employment shares of female, foreign, age ≥ 50, medium skilled (with
completed apprenticeship), and high skilled (with a university-degree) workers relative to total employment (reference category:
unskilled workers and with unknown education). In column 1, we control for the manufacturing share in total employment. In
columns 2-4, we instead include broad industry shares to control better for regional industry patterns. Industry shares cover the
percentage of workers in nine broad industry groups (agriculture (reference); food products; consumer goods; industrial goods;
capital goods; construction; consumer related services; business related services; public sector) in the base year 1994. Columns 3
and 4 successively take into account the change in German net exports vis-à-vis China and 21 Eastern European countries (in
1000 eper worker), and the change in ICT equipment (in e per worker), both between 1994 and 2014. Panel B reports results of
a two-stage least squares (2SLS) IV approach where German robot exposure is instrumented with robot installations across
industries in other high-income countries. Standard errors clustered at the level of 50 aggregate labor market regions in
parentheses. Shift-share standard errors in brackets.

Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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the main coefficient, moving its magnitude by around 0.03 and 0.12 points. However, the main

results remain unaffected and the coefficient estimates imply only small employment effects

of automation.

Panel B shows the results when the regressions are estimated with 2SLS. First, across

the different specifications, the 2SLS estimates are close to their OLS counterparts. The

Kleibergen and Paap (2006) statistic indicates there is no problem of weak instruments and

the Hansen test values imply no rejection of the null hypothesis of valid instruments. Given,

however, that the OLS and 2SLS estimates are so similar because of the closely correlated

patterns of robot adoption across countries, we will put our focus for the rest of the paper on

the simpler OLS strategy and present the instrumental variable estimates in the appendix for

the most part.

3.2 Displacement versus Reallocation

We next study the displacement and reallocation/productivity effects of automation sepa-

rately. To analyze decomposition effects, we opt for (arguably) the most transparent cut of

the data. In particular, the displacement of workers should occur within the robot adopting

manufacturing sector. At the same time, the demand for labor in all other local industries

increases when industries are gross complements in the production of a final consumption

good. A plausible hypothesis is that industries in the service sector should see an increase in

labor demand.

Panel A in Table 3 presents the results for employment changes.18 Column 1 repeats the

main estimate from Table 2 column 4, which was the fully specified model with the most

control variables. The models in columns 2 to 4 use the (percentage) change in manufacturing

as the outcome variable. Column 2 has the same control variables as column 2 of Table 3,

namely broad industry employment shares and regional dummies. The next columns add

trade and ICT exposure, respectively. The estimates in all three columns show a negative

coefficient and, importantly, the effect size is around one order of magnitude larger than the

effects on total employment. Columns 5 to 7 investigate the impact on employment in the

service sector. The positive coefficients reveal the presence of substantial reallocation forces,

offsetting the adverse impact of the displacement effects. Approximately, displacement and

reallocation effects tend to be of similar magnitudes, which explains the robust finding of a

zero total employment effect.

We re-estimate the models in Panel B with the change in the employment-to-population

ratio as the dependent variable.19 Column 1 shows an effect close to zero. But again this
18Here we focus on the OLS results for brevity. The very similar 2SLS estimates can be found in Appendix

Table A.1.
19We measure employment by all jobs in Germany subject to social security. This yields small E/POP ratios

between 0.25 and 0.5 in our sample since we have excluded civil servants and self-employed workers. Including
civil servants and self-employed workers in the E/POP with data from the German Federal Statistical Office
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Table 3: Composition Effects

Total Manufacturing Non-manufacturing

(1) (2) (3) (4) (5) (6) (7)

[A] Employment: % change in total employment between 1994 and 2014

4 robots per 1000 workers 0.0858 -0.5690 -0.6055 -0.4467 0.5599 0.5412 0.7051
(0.122) (0.177) (0.173) (0.160) (0.275) (0.272) (0.275)
[0.167] [0.304] [0.304] [0.281] [0.382] [0.390] [0.442]

[B] E/Pop: 100 x 4 in employment/population between 1994 and 2014

4 robots per 1000 workers 0.0091 -0.0449 -0.0501 -0.0423 0.0405 0.0399 0.0514
(0.060) (0.028) (0.029) (0.030) (0.039) (0.039) (0.038)
[0.031] [0.033] [0.033] [0.029] [0.036] [0.037] [0.043]

Effect of 1 robot 0.3 -1.6 -1.8 -1.5 1.4 1.4 1.8

[C] Wages: 100 x Log-4 in average wage between 1994 and 2014

4 robots per 1000 workers -0.0345 -0.1367 -0.1450 -0.0960 0.0894 0.0809 0.0904
(0.049) (0.049) (0.050) (0.060) (0.037) (0.038) (0.037)
[0.029] [0.072] [0.073] [0.070] [0.061] [0.060] [0.063]

[D] Wagebill: 100 x Log-4 in total wagebill on June 30

4 robots per 1000 workers 0.0851 -0.6017 -0.6568 -0.4509 0.3763 0.3524 0.5180
(0.125) (0.177) (0.175) (0.182) (0.212) (0.208) (0.211)
[0.197] [0.330] [0.331] [0.328] [0.287] [0.293] [0.354]

4 net exports in 1000 e per worker Yes No Yes Yes No Yes Yes
4 ICT equipment in e per worker Yes No No Yes No No Yes

Notes: In all regressions, the variable of interest is the change in robot exposure between 1994 and 2014. The estimates in
panels A, B, and D are based N = 402 local labor market regions (Landkreise und kreisfreie Staedte), while the unit of
observation in the wage estimates in panel (C) are N = 7, 236 region x demographic cells. Demographic cells are defined by
gender, three age groups, and three education groups. We only include cells containing at least 10 observations, and perform the
regressions at the region x demographic cell level including fixed effects for demographic cells. The dependent variable in Panel
D is the log-difference total amount of gross salaries paid to employees subject to social security on June 30 in 1994 and 2014.
All specifications include a constant, broad region dummies, demographic control variables, and employment shares of nine
aggregate industry groups, measured in the base year 1994. Standard errors clustered at the level of 50 aggregate labor market
regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

hides significant displacement in columns 2 to 4 and strong reallocation effects in columns 5

to 7. Since the sum of the employment-to-population ratios in the two sectors equals the total

employment-to-population ratio in a region, the coefficients of the fully specified models in

4 and 7 sum up to 1. We can translate these numbers into head counts.20 This makes the

does not affect our results. See also column 6 of Appendix Table A.4, which shows no effect of robots on public
employment.

20If we have two time periods, Et is job head counts in t, R installed robots, and Pop population, then:

E2

Pop2
− E1

Pop1
= β

(
R2 −R1

E1

)
× 1000.

If we assume a constant population, we get:

E2 − E1 = β

(
R2 −R1

E1/Pop1

)
.
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estimates directly comparable to Acemoglu and Restrepo (2019) for the US, since our E/POP

ratio is calculated differently here (see footnote 19). The numbers are shown in the second

to last row of Panel B. The preferred estimate from column 4 implies a displacement effect of

-1.5 workers per new robot.21

In Panel C, we repeat the analysis using the change in local average daily log wages as the

outcome variable. We note that the wage estimates must be interpreted with some caution.

Robot exposure displaces workers at least in the manufacturing sector, which creates selection

since wage outcomes are only available for employed workers.22 We circumvent these selection

issues when we look at labor earnings directly for exposed individual workers in section 6.

The results by and large mirror the employment effects. Column 1 shows a small, negative,

and insignificant impact of robot exposure on wage growth. Consistent with the employment

results, however, we see negative effects within manufacturing in columns 2 to 4 and positive

effects in the service sector in columns 5 to 7. The results strongly support the hypothesis of

decreased manufacturing labor demand in regions with high robot exposure and an offsetting

increase in labor demand for local services.

Panel D combines the wage and employment information by calculating sectoral total wage

bills (based on the universe of social security records). The results in columns 1 to 7 strongly

support the interpretation of reduced manufacturing labor demand in regions strongly exposed

to automation but increasing labor demand in local service industries.

The results represent strong evidence that the adoption of robots has led to positive em-

ployment spillovers on other local industries in non-manufacturing.23 Our data allow us to

further look at this channel. Table A.4 in the appendix presents estimates when we split

up the non-manufacturing sector into several subsectors. We differentiate business services,

consumer services, construction, and public government services. The first category includes

employment in establishments that render their services to other businesses on a contract or

fee basis. This includes services related to information and communication technology, clean-

ing, or security. The second category, consumer services, contains employment in hotel and

restaurant services, as well as beauty services such as haircutting.

Finally, normalizing to one additional robot per 1,000 workers, and using a ratio of the number of jobs covered
by social security relative to the population of 0.28, which is the average value across regions in 1994, we get
the numbers from Table 3.

21Using the model from Acemoglu and Restrepo (2019), one can calibrate the impact assuming dampening
general equilibrium effects to arrive at numbers which are around 10-15% smaller. For comparison, the number
of jobs lost per robot – both from direct and indirect – effects is calculated as around 3 for the US by Acemoglu
and Restrepo (2019).

22We conduct our analysis at the demographic group-region cell level, as in Acemoglu and Restrepo (2019)
to deal with the changing observables of employed workers. Using residualized wages from Mincer regressions
gives us very similar effects.

23Any negative spillover effects form the displacement forces of automation appear, hence, to be dominated
by new labor demand, at least for service industries. Gathmann, Helm, and Schönberg (2019) consider the
regional effects of mass layoffs and detect significant negative spillovers. While the displacement effects we
document are economically significant, industrial robots did not trigger mass layoff episodes in Germany, which
limits the scope for negative spillovers.
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By far the largest employment effect is on business services with a coefficient of 0.59. The

consumer service coefficient, in contrast, is only estimated to have a value of 0.041. The

other coefficients on construction employment and public sector employment are close to

zero. Positive employment spillovers are hence driven by spending from local firms on local

services. This result is consistent with the model by Acemoglu and Restrepo (2019) where

increased robot adoption raises demand for complementarity inputs by producers. Relatedly,

Goldschmidt and Schmieder (2017) show that task outsourcing has increased within Germany.

It is conceivable that increased automation may be related to changing boundaries of the

firm, and may accelerate these processes. This would be consistent with a positive effect of

automation on business service employment. We leave a further empirical investigation of this

very interesting issue for further research.

The appendix contains important robustness checks to our findings (Table A.2). First,

we check for the presence of pre-trends by regressing lagged outcome variables on future

exposure.24 Second, we restrict the time window for the analysis to stop before the global

great recession in 2007. Third, we conduct various checks concerning the regional dimensions.25

Finally, we pay special attention to the car industry. We split up the treatment variable into

exposure to robots in automobile production and robots in other industries. The displacement

effect is relatively homogenous across sectors. Reallocation is driven by the exposure to

robots in automobile production, in contrast. This suggests that the productivity effects

were particularly large in this sector.26 An alternative way to look at the automotive sector is

to distinguish between automotive and other manufacturing when constructing the outcome

variables, as we show in Panel H. While the effect of robots on other manufacturing industries

is quantitatively similar to the overall effect, we find an exorbitant but also very imprecisely

estimated negative coefficient for car manufacturing. We conclude that our main results are

not exclusively driven by this sector but are rather representative for manufacturing as a

whole.

3.3 Productivity and the Labor Share

The reallocation of labor should be directly tied to productivity gains. Table 4 presents direct

evidence on this, using data on labor productivity which is measured as output per worker.

Because of constraints on the available data, which comes from the German Federal Statistical

Office, the period of analysis is the long difference between the years 2000 and 2014. As can be

seen in Panel C of Table A.2, this restriction does not alter our previous results on employment
24The results here imply that labor demand in manufacturing and services was trending in the opposite

direction, so that higher future robots exposure was correlated with higher manufacturing employment growth.
25Leaving out East Germany leaves the results unaffected. The results remain also very similar when we

include time trends at the level of 16 federal states, and changing the local labor market definition, making
labor markets broader (reducing the number of units from 402 to 258).

26It also points to an interaction of automation with trade, since Germany is a large exporter of cars, and
one would expect that productivity effects are increasing in market size.
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Table 4: Labor Share and Productivity

Dependent variable:
% change between 2000 and 2014

Labor productivity Labor share

(1) (2) (3) (4) (5) (6)

[A] OLS

4 robots per 1000 workers 0.7844 0.7320 0.7515 -0.2819 -0.3207 -0.3095
(0.399) (0.371) (0.351) (0.141) (0.134) (0.123)
[0.401] [0.345] [0.338] [0.141] [0.145] [0.134]

[B] 2SLS

4 robots per 1000 workers 0.8030 0.7533 0.7774 -0.2910 -0.3345 -0.3276
(0.384) (0.360) (0.351) (0.136) (0.126) (0.119)
[0.431] [0.369] [0.361] [0.149] [0.153] [0.141]

4 net exports in 1000 e per worker No Yes Yes No Yes Yes
4 ICT equipment in e per worker No No Yes No No Yes

Notes: N = 402 local labor market regions (Landkreise und kreisfreie Staedte). The period of analysis is 2000-2014 due to
availability of regional GDP and employee compensation data. The dependent variable in columns 1-3 is the log change in
output per worker x 100 and in column 4-6 the percentage point change in the total employee compensation
(Arbeitnehmerentgelte) over total GDP x 100. All specifications include a constant, broad region dummies, demographic control
variables, and employment shares of nine aggregate industry groups, measured in the base year 2000. Standard errors clustered
at the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, Comtrade, EU KLEMS, German Federal Statistical Office, and BHP 7514 v1, own calculations.

in manufacturing and non-manufacturing. The columns are ordered as in Table 3, increasing

the set of control variables. The estimated magnitudes from Panel A imply that a labor market

at the 75th percentile compared to a 25th percentile labor market of the exposure distribution

has accumulated around 2.3% higher productivity.

Am important and common prediction made by recent task-based models of automation

(e.g. Acemoglu and Restrepo, 2018b), is that the labor share is expected to decrease with the

advancement of labor replacing technologies such as industrial robots.27 We can leverage the

local labor market design to credibly test this prediction. Panel B uses changes in the labor

share again for the time period from 2000 to 2014 as the outcome of a 2SLS IV regression.

Using the interquartile spread again to benchmark the magnitude, the estimates imply a

negative cumulated impact of around 1% point of the labor share.
27In contrast to, for example, a multi sector growth model featuring a unitary elasticity of substitution

between capital and labor in production (Ngai and Pissarides, 2007).
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4 Adjust Mechanism I: Reduced Creation of New Jobs for

Young Workers

We have documented the presence of substantial and roughly offsetting displacement and

reallocation effects of automation. This analysis relied on a local labor market approach as

in Acemoglu and Restrepo (2019). In this section, we leverage the availability of detailed

administrative panel data to dig deeper and understand which kind of workers are actually

displaced and reallocated in response to automation. This sheds novel light on how labor

markets adjust in response to automation. One of the main results will highlight that a large

portion of the incidence of displacement and reallocation is borne by young workers, who face

reduced (increased) job creation in the manufacturing (service) sector.

We analyze the adjustment process by decomposing the employment variables from Sec-

tion 3 into mutually exclusive channels. The decomposition is additive and, hence, easy to

interpret. We start by characterizing the displacement effect. Conceptually, we distinguish

between workers who were working in the exposed manufacturing sector at the start of the

period in 1994 and non-incumbents who were not working in manufacturing in 1994.

The set of different channels for the displacement effect to materialize are listed in the

seven columns of Panel A of Table 5. Columns 1 to 3 summarize the outcomes for incumbent

manufacturing workers, defined as the set of workers employed in manufacturing in the year

1994 at the start of the period analyzed. They include employment at the same plant,28 within

the original industry but at a different plant, and finally employment in the non-manufacturing

sector. Columns 4 to 7 encompass all margins related to workers not in the manufacturing

sector at the start of the period in 1994. They comprise workers who had not entered the

labor market yet in 1994, workers who were already in the same local labor market but not in

the manufacturing sector, workers who were employed in a different region, and temporarily

non-employed workers in 1994. The coefficients from columns 1 to 7 add up to the coefficient

from column 8, which is the full effect on manufacturing employment from column 4 of Table 3

and re-stated here to facilitate reading and interpretation.

Column 1 in Panel A starts with a – perhaps – surprising finding. Exposure to automation

increases employment at one’s original employer. The effect is sizable and around a third of

the total displacement effect from column 8. We will devote parts of the next section of the

paper to explain the mechanisms and document how workers relocate within firms across tasks

and occupations. So while incumbent workers face a lower layoff risk, this is offset – almost

one-to-one – by decreased employment in other firms in the same industry, as evidenced by

the estimate in column 2.29

28In our data, we only observe plants but not firms. On a few occasions, we use these term interchangeably.
29These results are in line with Koch, Manuylov, and Smolka (2019), who find that Spanish firms create

jobs after investing in robots. By contrast, Bessen, Goos, Salomons, and Berge (2019) find that in particular
older workers are more likely to leave firms that invested in automation technologies in a broader sense. This
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These two findings are consistent with the following interpretation(s). Labor market in-

stitutions in the form of firing costs make it costly to lay off workers even though the tasks

previously performed by those workers are now carried out by industrial robots. At the

same time, productivity effects are plausibly occurring mostly within the same firms adopting

robots, which allows the re-shuffling of workers from automated tasks to other tasks, since

new demand for non-automated task arises in those firms. These two forces explain why robot

adoption actually increases employment with the original plant. In Section 5, we document

how automation indeed causes the re-shuffling of workers across tasks within plants. In ad-

dition, below, we present (indirect) evidence on how variation in labor market institutions

influences the "retainment" effect from column 1. However, the estimate in column 2 shows

that – conditional on a separation – workers have a harder time regaining employment in the

same industry, consistent with general reduced labor demand in robot adopting industries.

Moreover, column 3 confirms that the displacement effect for incumbents also leads to re-

duced employment in the manufacturing sector as a whole. The overall impact on incumbent

workers can then be benchmarked as around 20% of the total displacement effect, obtained

by summing up columns 1 to 3 and dividing by the estimate in 8.

On the flipside, the remaining 80% of the displacement incidence falls on non-incumbent

workers. The negative coefficient in column 4 reveals that the largest burden is on young

workers, who had not entered the labor market in 1994 (and subsequently entered in some

year between 1995 and 2014). Consistently, automation reduces flows from the service into

the manufacturing sector and lowers entry from unemployment, as evidenced by columns 5

and 7. The effect sizes, however, are much smaller compared to the entrants margin. Reduced

in-migration, as measured by column 6, plays no role in explaining the displacement force.

Panel B provides the same decomposition for the non-manufacturing sector to study the

reallocation effect. By construction the sum of columns 1 to 7 equals the estimate from

column 8 (and column 7 from Table 3). We expect zero or only very small impacts for non-

manufacturing workers, since their task set is not exposed to automation. This is confirmed in

columns 1 to 3. An important open question is, if the manufacturing displacement experienced

by entering labor market cohorts leads to offsetting gains for young workers in services. The

estimate in column 4 provides the answer and implies gains for young workers, partly offsetting

the adverse impacts from displacement. If productivity effects also spillover into the service

sector – something which should be expected given that tasks in this sector are q-complements

to automated tasks – robot exposure should presumably also increase labor demand in services

at other margins. There is indeed a positive effect – shown in column 6 of Panel B – on pulling

in workers into an expanding service sector from other regions.

suggests that the concrete firm-level effects of robots might vary across countries, depending on their labor
market institutions.
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Table 5: Adjustment

Dependent variable:
100 x Number of workers in 2014 / total employment in 1994

Incumbent workers Entrants total

Same plant as in 1994 yes no no entered same region, in diff. not
Same industry as in 1994 yes yes no labor mkt. diff. sector region emp.
Same sector as in 1994 yes yes yes after 1994 in 1994 in 1994 in 1994

(1) (2) (3) (4) (5) (6) (7) (8)

[A] Manufacturing

4 robots per 1000 workers 0.1579 -0.1524 -0.0895 -0.2315 -0.0608 0.0003 -0.0706 -0.4467
(0.052) (0.051) (0.014) (0.091) (0.026) (0.036) (0.027) (0.160)
[0.074] [0.089] [0.039] [0.137] [0.043] [0.058] [0.039] [0.281]

[B] Non-Manufacturing

4 robots per 1000 workers -0.0423 -0.0251 -0.0153 0.5582 -0.0121 0.2002 0.0415 0.7051
(0.014) (0.012) (0.014) (0.194) (0.012) (0.053) (0.039) (0.275)
[0.028] [0.013] [0.015] [0.337] [0.006] [0.106] [0.037] [0.442]

Notes: N = 402 In this table, the employment growth rate is additively split up into the contributions of different groups of
incumbent workers or workers that enter the region’s manufacturing (Panel A) or non-manufacturing sector (Panel B) between
1994 and 2014. The coefficients of columns 1-7 sum up to the coefficient in column 8. The regressions include the full set of
control variables as in column 4 of Table 2. Standard errors clustered at the level of 50 aggregate labor market regions in
parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

Given that the incidence of the reallocation effect falls primarily on young workers, one

should expect that the age structure in the manufacturing sector evolves differently than in the

service sector. In the appendix in Table A.5, we find that automation reduces the average age of

workers in the service sector and increases the average age of manufacturing workers (although

the latter effect is small and imprecisely estimated). Our results are consistent with a two-way

interaction between automation and aging. Acemoglu and Restrepo (2018a) investigate the

effect of an older population on more automation. We find that more automation causes an

increase in the average age of the working population in regions more affected by automation.

These effects could reinforce each other.

Heterogeneity. In this subsection, we present additional results for the displacement, reallo-

cation, and productivity effects, splitting labor markets into how strong the Social Democratic

Party of Germany (SPD) polled during the 1980, 1983 and 1987 federal elections. The idea is

that the strength of the German social-democratic labor party can act as a proxy for differ-

ent labor market institutions strengthening incumbent workers’ rights, like, for example, the

power of unions, works councils, or how labor courts rule. Spier (2017) argues that for most

of post-war German history, the SPD and the major trade unions were very closely aligned.30

Relatedly, Berger and Neugart (2011) show that labor court verdicts on dismissal cases sys-

tematically vary with the political leaning of the government that has appointed judges across
30Under the direction of chancellor Gerhard Schröder in the early 2000s, these relations started to weaken.

To partly circumvent this, we use the historical vote shares preceding this period.
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German states. This is a direct way in which the relative strength of left-leaning versus con-

servative parties introduces variation in institutions, in particular firing costs of incumbent

workers.

In this exercise, we focus on West Germany since we measure the strength of the SPD

according to their average vote shares during the three federal elections in the 1980ies. Unlike

the two elections in 1990 and 1994, which were conducted in all of Germany, we argue that the

earlier elections were not affected by the regional distribution of robot installments starting in

the 1990ies and the very special events due to the German Reunification.31 While our measure

is clearly imperfect and potentially imprecise, we would expect that exposure to automation

impacts labor markets with different political leanings quite differently. Displacements and

therefore productivity effects should be weaker where worker protections are stronger. 32

First, we again analyze the effects of robots on productivity and the labor share in Table 6.

The earlier results from Table 4 appear to be driven by regions with a below median share of

votes for the SPD. In those regions, both the positive effect of robots on labor productivity

and the negative effect of robots on the labor share are particularly strong. By contrast, in

regions with an above median share of SPD-votes, both effects are small and insignificant.

This suggests that adjustment was more difficult for firms in regions with strong labor market

institutions that favor incumbent employees.

Above in this section, we presented a worker retention result: workers in more exposed

local labor markets are more likely to stay with their original plant. Are firms retaining their

workers voluntarily at higher rates in the wake of automation because they value their firm-

specific human capital? Or does this finding capture high firing costs? We examine this in

Table 7. Comparing the coefficients in column 1 from panels A and B reveals that the retention

effect is much stronger in areas with higher worker protection. At least part of the retention

therefore seems to reflect institutional constraints on firms to adjust to technological change.

By contrast, conditional on leaving the original plant, workers are not protected by these

institutions any more and hence columns 2 and 3 show that the effects of robots on mobility

to other plants within the manufacturing sector do not differ between regions with higher

and lower job protection. In columns 4 to 7, we report the effects on entrants into the local

manufacturing sector. Aside from the lower retention of incumbent workers, the manufacturing

sector in low job protection regions also attracts fewer young entrants, formerly unemployed,

and workers changing between sectors. In total, column 8 shows displacement measured by

manufacturing employment was much stronger in the low worker protection regions.
31We show in Appendix Tables A.6 and A.7 that the results also hold when we use the vote shares of the

SPD and the PDS, the successor of the socialist single political party of the DDR, in the 1994 elections.
32Data on election outcomes are available from the Federal Returning Officer (Bundeswahlleiter) at the

level of electoral districts. Since those are not congruent with counties, we aggregate the election data to
administrative districts (NUTS-2 regions) before merging them to our main data.
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Table 6: Labor Share and Productivity - by vote shares of the social democratic
party (SPD)

Dependent variable:
% change between 2000 and 2014

Labor productivity Labor share

(1) (2)

[A] Above median share of SPD votes in 1980, 1983, 1987 federal elections

4 robots per 1000 workers 0.1648 -0.1358
(0.207) (0.136)
[0.271] [0.127]

[B] Below median share of SPD votes in 1980, 1983, 1987 federal elections

4 robots per 1000 workers 1.5593 -0.6003
(0.176) (0.088)
[0.765] [0.254]

Notes: N = 158 (Panel A) and 167 (Panel B). The period of analysis is 2000-2014 due to availability of regional GDP and
employee compensation data. The dependent variable in columns 1 is the log change in GDP per worker x 100 and in column 2
the percentage point change in the total employee compensation (Arbeitnehmerentgelte) over total GDP x 100.
The regressions include the full set of control variables as in column 4 of Table 2. Standard errors clustered at the level of 50
aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, BHP 7514 v1, and Federal Returning Officer, own calculations.

5 Adjust Mechanism II: Skill Upgrading

In this section, we turn our attention to different mechanisms of adjustment: the re-assignment

of workers to new tasks and the upgrading of skills. The analysis will establish four new results

how automation through robots influences the transition across tasks and human capital ac-

quisition of the labor force. First, a majority of workers who are retained by their firms despite

increases in automation, are re-assigned to new occupations. Second, their new occupations

feature a more abstract and less routine intensive task content. Third, they are higher up in

the wage ladder and are characterized by a higher college share of their workforce. Finally, the

skill (college) share among labor market entrants increases significantly, the apprentice share

goes down, and (relatedly) the jobs held by labor market entrants become more abstract and

less routine intensive.

Table 8 presents the results from models which analyze the adjustment process for in-

cumbent manufacturing workers. All models follow the specification with the most control

variables as in Sections 3 and 4. Our linked employer-employee data allows us to observe the

workplace of every worker at all points in time. We also observe 3-digit observation codes,

which we aggregate to 54 economically more meaningful occupational fields according to the

German Federal Institute for Vocational Education and Training (Tiemann, Schade, Helm-

rich, Hall, Braun, and Bott, 2008). We measure the quality of occupations according to four

dimensions: the median wage of all full-time employees, the share of workers with a college

degree, and the intensity in abstract and routine tasks. For the latter two, we follow Spitz-
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Table 7: Manufacturing Adjustment - by vote shares of the social democratic
party (SPD)

Dependent variable:
100 x Number of workers in 2014 / total employment in 1994

Incumbent workers Entrants total

Same plant as in 1994 yes no no entered same region, in diff. not
Same industry as in 1994 yes yes no labor mkt. diff. sector region emp.
Same sector as in 1994 yes yes yes after 1994 in 1994 in 1994 in 1994

(1) (2) (3) (4) (5) (6) (7) (8)

[A] Above median share of SPD votes in 1980, 1983, 1987 federal elections

4 robots per 1000 workers 0.2379 -0.1524 -0.0973 -0.0455 -0.0049 -0.0655 -0.0051 -0.1328
(0.070) (0.118) (0.020) (0.148) (0.038) (0.050) (0.046) (0.308)
[0.107] [0.095] [0.047] [0.131] [0.043] [0.055] [0.043] [0.269]

[B] Below median share of SPD votes in 1980, 1983, 1987 federal elections

4 robots per 1000 workers 0.0746 -0.1475 -0.0818 -0.2716 -0.0679 0.0939 -0.0856 -0.4858
(0.070) (0.037) (0.023) (0.131) (0.020) (0.047) (0.039) (0.253)
[0.074] [0.109] [0.040] [0.196] [0.038] [0.082] [0.047] [0.341]

Notes: N = 158 (Panel A) and 167 (Panel B). In this table, the employment growth rate is additively split up into the
contributions of different groups of incumbent workers or workers that enter the region’s manufacturing sector between 1994 and
2014. The coefficients of columns 1-7 sum up to the coefficient in column 8. The regressions include the full set of control
variables as in column 4 of Table 2. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses.
Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

Oener (2006) and construct task intensities as the average shares of abstract or routine tasks

in all tasks performed by around 20,000 workers surveyed in the 1991 BIBB/IAB Employment

Survey.33

Panel A starts with a decomposition of the "retainment" effect, shedding light on the

question, how plants keep workers around in the wake of automation. Column 3 repeats this

retainment effect from column 1 of Table 5. In columns 1 and 2, the coefficient is additively

decomposed into the contribution of days employed in the same plant in a worker’s origin

occupation in 1994 and days employed in other occupations by defining the dependent variables

in this way. The magnitudes imply that 77% (0.1214/0.1579) of the total effect stem from

days worked in a different occupation.

It is not clear to what extent workers profit from these occupational transitions. To address

this, the next set of models in Panel B investigate several dimensions of the occupational

quality of jobs. The first measure is the change in median occupational wages. Concretely, we

measure the quality of an occupation at any point in time as the median wage of all workers

in this occupation in 1994.34 The outcome variable is the log difference of the median wage of

the occupation a worker held in 2014 vs. the median wage of the occupation the same worker

held in 1994. In column 1, this variable is constructed only from workers who stayed in their
33A third task category is manual tasks, which we omit here as it is mostly relevant for individual-related

services.
34Using median wages from earlier years as measure leaves the results unaffected.
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Table 8: Occupational Upgrading Within and Across Firms

(1) (2) (3) (4)

[A] Occupational adjustment
Dependent variable:

100 x Number of workers in 2014 /
total employment in 1994

Same plant as in 1994 yes yes yes
Same occupation as in 1994 yes no (total)

4 robots per 1000 workers 0.0366 0.1214 0.1579
(0.027) (0.030) (0.052)
[0.022] [0.058] [0.074]

[B] Occupational upgrading: Wages and skills
Dependent variables:

4 log median wage in e 100 x 4 college share
Same plant as in 1994 yes no yes no

4 robots per 1000 workers 0.0620 0.0411 0.0687 0.0256
(0.025) (0.029) (0.020) (0.019)
[0.045] [0.033] [0.037] [0.015]

[C] Occupational upgrading: Tasks
Dependent variables:

100 x 4 abstract task intensity 100 x 4 routine task intensity
Same plant as in 1994 yes no yes no

4 robots per 1000 workers 0.0808 -0.0082 -0.1276 -0.0466
(0.024) (0.022) (0.031) (0.024)
[0.044] [0.017] [0.074] [0.030]

Notes: N = 402. In this table, we analyze the effect of robots on the occupation dimension of exposed workers. In Panel A, the

dependent variables are 100x the number of workers who stay in the manufacturing sector of their original region but show

different kinds of job mobility, relative to total employment in 1994. The coefficients of Panel A, columns 1 and 2 add up to the

coefficient in column 1 of Panel A, Table 5 (also reported in column 3). In Panels B and C, we focus on the occupational quality

of workers who stay in the manufacturing sector of their original region but possibly switch into a different occupation. The

dependent variable in columns 1 and 2 of Panel B is the difference of the median wage, measured in 1994, of the occupation of

workers staying in the same plant in 2014 versus the occupation in 1994. The dependent variable in columns 3 and 4 of Panel B

is the difference of the percentage of people with a college degree, measured in 1994, of the occupation of workers staying in the

same plant in 2014 versus the occupation in 1994. The dependent variable in Panel C is the difference of the abstract (columns

1 and 2) and routine (columns 3 and 4) task intensities, measured in 1994, of the occupation of workers staying in the same

plant in 2014 versus the occupation in 1994. The regressions include the full set of control variables as in column 4 of Table 2.

Standard errors clustered at the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in

brackets. Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

initial plant, while in column 2, the outcome is analogously defined for workers who switched

between plants. Positive coefficients would indicate that robots exposure leads to occupational

upgrading. Column 1 displays a positive coefficient, around twice the size of the coefficient in

column 2. So, on average, higher robots exposure causes occupational mobility up the wage

ladder and the effect is much stronger within plants, so for workers who are retained by their

original employer.
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Table 9: Robots and skill share of people younger than 30

Dependent variable:
100 x 4 Share of workers with Task intensity

university apprenticeship abstract routine
degree degree
(1) (2) (3) (4)

4 robots per 1000 workers 0.0932 -0.0684 0.0686 -0.0604
(0.039) (0.033) (0.031) (0.020)
[0.049] [0.042] [0.040] [0.038]

Notes: In this table, we analyze the effect of robots on occupational quality of younger workers. The estimates are based on
N = 402 local labor market regions (Landkreise und kreisfreie Staedte). The dependent variables is the change in various
measures for occupation quality of workers 30 years old or less between 1994 and 2014: Share of workers with university degree
(column 1), share of workers with apprenticeship degree (2), average abstract task intensity (3), and average routine task
intensity (4). The regressions include the full set of control variables as in column 4 of Table 2. Standard errors clustered at the
level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

The dependent variable in column 3 (4) of Panel B is the difference of the percentage of

people with a college degree, measured in 1994, of the occupations of workers working in the

same plant (a different plant) in 2014 versus the college percentage of their occupation in

1994.35 The results imply a positive effect of automation on occupational quality and the

effect is again much larger for firm stayers.36

Finally, Panel C studies the re-assignment of tasks for exposed workers. The dependent

variable in Panel C is the difference of the abstract (columns 1 and 2) and routine (columns 3

and 4) task intensities, measured in 1994, of the occupation of workers staying in the same plant

in 2014 versus their occupation in 1994. Columns 1 and 3 present evidence that automation

causes a shift in the careers of workers away from routine to abstract tasks within plants. The

coefficients in columns 2 and 4 show much smaller effects across plants.

We next turn to human capital adjustments of young cohorts. The first dependent variable

of Table 9 is the change in the share of college educated workers of age 30 and lower, which hold

at least a degree which requires 3 years or more of tertiary eduction. The positive coefficient

indicates that young people adjust to local automation by increasing their level of education.

Column 2 shows that is counteracted by a significant reduction in the apprenticeship share.

Importantly, the table also shows that the adjustment efforts of young workers extends beyond

education choices and into occupational choices. In columns 3 and 4 we measure the effect of

robots on changes in the task contents of jobs held by people below 30. One sees a reallocation

in highly exposed regions from routine towards abstract tasks. These results are robust to
35Again, using lagged college share produces almost the same results, since skill share remained fairly stable

during this time period.
36Comparing plant stayers and switchers may be difficult if automation changes the composition of workers

who stay/leave their original firm. We found no significant differences in the difference between stayers and
leavers in highly exposed versus weakly exposed regions in terms of observables.
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using different age cutoffs than 30; in Appendix Table A.3 we present the results with a cutoff

of 40 as an example.

6 Individual Level Results

We now shift the focus from local labor market adjustments to the individual worker. This

complements the previous models because it allows to directly study the effects of automation

on earnings and wages using a more compelling design. Comparing wage or earnings growth

across local labor markets, in contrast, can lead to biased results because automation changes

the composition of employed workers. By following the same workers, we can circumvent those

selection issues.

6.1 Earnings and Employment

We use an exposure to automation design which compares the outcomes of workers which

were employed in a manufacturing industry in 1994.37 We follow the standard practice in the

literature and focus on workers with sufficiently high labor force attachment. This means that

we restrict the sample to workers who were i) between 22 and 44 years old, ii) earned more

than the marginal-job threshold, and iii) had job tenure for at least two years in the base year

1994.38 Finally, we keep only workers in manufacturing industries that can be matched to the

IFR data. The specification is:

Yij = α · x′ij + β ·∆robotsj + γ · z′j + εij.

Yij represents the cumulated number of days spent in employment – irrespective if em-

ployed in a manufacturing or a different sector – over the 1995-2014 period in the first set of

regressions. In the vector x′ij we include worker-level controls, measured in the base year 1994:

dummies for gender, foreign nationality, three skill categories, and three tenure categories. In

addition we include a full set of age dummies, federal state dummies (there are 16 federal

states), and dummies for six plant size groups. We also control for the log of yearly earnings

of a worker at the start of the period, i.e. 1994.

The term ∆robotsj is the change in robot adoption per worker – with the number of

workers fixed at the starting level in 1994 – in industry j. As described in Section 2, the

IFR classification allows to distinguish 20 manufacturing industries. To account for this, we

cluster standard errors at the levels of the IFR classification with 20 clusters. z′j is a vector

of industry controls with dummies for broad industry groups to control for broad trends.39 It
37This approach has also been used by Autor, Dorn, Hanson, and Song (2014) to study the worker-level

impacts of trade shocks. We follow their method here.
38Results are very similar, however, when including also workers with lower attachment.
39The categories are, as in Section 3, food products, consumer products, capital goods, and industrial goods.
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also contains changes in trade exposure at the 3-digit level and ICT exposure at the 2-digit

level.40

As of the data in this section, we use a 30 percent sample of the Integrated Labor Market

Biographies (IEB V12.00.00) of the Institute for Employment Research. This data is similar

to the administrative data introduced in Section 2.1 but covers the complete employment

biographies with daily precision and not only the main observation on June 30. Since East

Germany saw very strong wage growth up until 1995, related to other factors besides automa-

tion, we drop workers who were employed there in 1994 in a robustness check. Our results

are unaffected, consistent with the analogue robustness checks at the regional level. Table 10

reports descriptive statistics of the variables used in the worker level analysis. The average

manufacturing worker in our sample has experienced an exposure equal to ∆robotsj = 24.4

(see panel C). Notice the large variation across individuals. The worker at the 75th percentile

has seen an increase in exposure that is almost five times larger than for the worker at the

25th percentile (26.1 versus 5.5 additional robots per thousand workers), and the comparison

between the 90th and the 10th percentiles is even more dramatic (104.3 versus -2.7). This

reflects the extremely skewed distribution of robot installation across industries that is illus-

trated in Figure A.1. The average worker in our sample is employed for 5,980 days during

the 20 years after 1994, which amounts to 82% of the duration of this period (7,305 days). In

terms of earnings, workers have on average almost exactly retained their base year earnings

over the 20-year period.

Table 11 shows how workers have adjusted in response to the emergence of industrial robots.

In both panels, the coefficients listed in columns 2 to 5 sum up to the total effect in 1. Column

1 shows a small, positive impact on employment. From column 2 of Panel A, it becomes clear

that this positive effect is driven by increased employment at one’s original plant, echoing the

local labor market results from Table 5. The economic magnitude of this effect is large and

around eleven times the size of the total employment effect. Quantitatively, it translates into

an increase of 197 days of employment (over 20 years) in one’s original plant for a worker

starting out in the industry at the 75th percentile relative to a worker from 25th percentile

exposed manufacturing industry. This number grows to 1,024 days roughly equal to three

years comparing the 90th and the 10th percentile.

Column 3 shows reduced transitions into other firms within the same industry.41 This is

consistent with our interpretation that workers are institutionally protected from displacement

at one’s own firm but have a hard time to find other gainful employment within the same

industry in the face of automation. Movements to other industries are reduced, as shown by

columns 4 and 5.
40See the data part in Section 2 for a description. See Dauth, Findeisen, and Suedekum (2019) for details

on the trade variables.
41Industry mobility is classified according to the 20 IFR industries, so at the level of robot adoption

variation.
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Table 10: Summary statistics, worker level.

Observations 720,562
mean (sd)

[A] Outcomes, cumulated over years following base year
Days employed 5,980 ( 1,986 )
Average daily wage 121.3 ( 71.2 )
100 x earnings / base year earnings 1,949.8 ( 1,000.3 )

[B] Control variables, measured in base year
Base year earnings 38,683 ( 20,599 )
Base year average wage 106.55 ( 55.14 )
Dummy, 1=female 0.211 ( 0.408 )
Dummy, 1=foreign 0.110 ( 0.313 )
Birth year 1960 ( 6 )
Dummy, 1=low skilled 0.160 ( 0.366 )
Dummy, 1=medium skilled 0.751 ( 0.432 )
Dummy, 1=high skilled 0.089 ( 0.285 )
Dummy, 1=tenure 2-4 yrs 0.397 ( 0.489 )
Dummy, 1=tenure 5-9 yrs 0.317 ( 0.465 )
Dummy, 1=tenure ≥10 yrs 0.247 ( 0.431 )
Dummy, 1=plant size ≤9 0.054 ( 0.225 )
Dummy, 1=plant size 10-99 0.224 ( 0.417 )
Dummy, 1=plant size 100-499 0.289 ( 0.453 )
Dummy, 1=plant size 500-999 0.122 ( 0.328 )
Dummy, 1=plant size 1000-9999 0.225 ( 0.418 )
Dummy, 1=plant size ≥10000 0.084 ( 0.277 )
Dummy, 1=food products 0.094 ( 0.291 )
Dummy, 1=consumer goods 0.033 ( 0.178 )
Dummy, 1=industrial goods 0.393 ( 0.488 )
Dummy, 1=capital goods 0.465 ( 0.499 )

∆ net exports / wagebill in % 14.413 ( 57.996 )
∆ ICT equipment in e per worker 254.9 ( 271.7 )

[C] Exposure to robots
∆ robots per 1000 workers 24.400 ( 40.119 )
p10-p90 interval [ -2.721 ; 104.258 ]
p25-p75 interval [ 5.547 ; 26.052 ]

Sources: IFR, COMTRADE, EU KLEMS, and IEB V12.00.00, own calculations.

Panel B extends the analysis to individual adjustments across occupations, using the same

classification of 54 occupational fields as in Section 5. Again, of high interest here is how

adjustments within firms take place, given displacement by robots. Columns 2 and 3 ex-

amine this by splitting employment within spells at the original plant into time worked in

the base year occupation and other occupations – consequently the two estimates sum up to

the coefficient in column 2 of Panel A. Approximately two thirds of the employment at the

original plant effect are driven by employment in a different occupation. Both coefficients

are statistically and economically significant. The decompositions can also be used to get a

total occupational mobility effect across all firms. We can add columns 2 and 4 to obtain

the effect of robot exposure on time spent in one’s original occupation and compare it to the

sum of column 3 and 5, which encompasses time spent in a different occupation. This gives
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Table 11: Individual Adjustment to Robot Exposure (Employment)

[A] Industry mobility (1) (2) (3) (4) (5)
all Service

employers same sector Sector
Same industry yes yes no no
Same employer yes no no no

∆ robots per 1000 workers 0.8659 9.5719 -3.5587 -2.1185 -3.0288
(1.290) (1.559) (2.689) (1.508) (1.247)

[B] Occupational mobility (1) (2) (3) (4) (5)
all jobs same employer other employer

Same occupational field yes no yes no

∆ robots per 1000 workers 0.8659 2.9067 6.6652 -6.1868 -2.5193
(1.290) (1.002) (1.417) (1.562) (0.978)

Notes: Based on 720,562 workers. OLS results for period 1994-2014. The outcome variables are cumulated days of employment.
For column 1, employment days are cumulated over all employment spells in the 20 years following the base year. Panel A: For
column 2 employment days are cumulated only when they occurred at the original workplace. For the other columns,
employment days are cumulated only when they occurred at a different plant in the same industry 3, at a plant in a different
manufacturing industry 4, and outside the manufacturing sector 5, respectively. Panel B: Employment days are cumulated only
when they occurred in the original occupation and workplace column 2, in a different occupation but at the original workplace
column 3, in the original occupation but at a different workplace column 4, and in a different occupation and workplace,
respectively. Control variables are log base year earnings and indicator variables for gender, foreign nationality, birth year,
educational degree (3 categories), tenure (3 categories), plant size (6 categories), broad manufacturing industry groups (4
categories), and 16 federal states. Standard errors are clustered by 20 ISIC Rev.4 industries in parentheses.

Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00, own calculations.

2.9067−6.1868 = −3.2801 versus 6.6652−2.5193 = 4.1459: in sum, automation has increased

occupational mobility.

A popular narrative in the public debate is that affected workers will have to be flexible and

mobile across tasks and occupations to be "one step ahead" of labor displacing technologies.

Those sets of results first imply that workers in Germany already responded by switching

tasks to the rise of industrial robots. Second, the reassignment of workers to new tasks

happen frequently within a worker’s original firm.

Table 12 extends the analysis to earnings. The models are an important complement to

the employment regressions since they help to paint a more complete picture about workers’

welfare than looking at employment outcomes alone. Following Autor, Dorn, Hanson, and

Song (2014), to create the outcome variable, we cumulate earnings over the whole period

and divide them by average earnings in 1994. The regressions can hence be interpreted as

differences-in-differences designs.

We begin in Panel A by studying the effect on earnings from all sources. In contrast to the

employment effects, one obtains a negative albeit very small and insignificant point estimate

of -0.19. To interpret the coefficient, we calculate the quartile spread again, comparing an

industry at the 75th percentile to an industry at the 25th percentile. The implied reduction

in earnings (over the whole 20 year period and not per year) would be 3.9% of annual initial
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Table 12: Individual Adjustment to Robot Exposure (Earnings)

[A] Industry mobility (1) (2) (3) (4) (5)
all Service

employers same sector Sector
Same industry yes yes no no
Same employer yes no no no

∆ robots per 1000 workers -0.1852 3.1138 -1.3986 -0.8332 -1.0671
(0.869) (0.561) (1.018) (0.629) (0.388)

[B] Occupational mobility (1) (2) (3) (4) (5)
all jobs same employer other employer

Same occupational field yes no yes no

∆ robots per 1000 workers -0.1852 0.7997 2.3141 -2.3107 -0.9883
(0.869) (0.313) (0.525) (0.631) (0.404)

Notes: Based on 720,562 workers. OLS results for period 1994-2014. The outcome variables are 100 x earnings (normalized by
earnings in the base year) cumulated over the 20 years following the base year. For column 1, earnings are cumulated over all
employment spells in the 20 years following the base year. Panel A: For column 2 earnings are cumulated only when they
occurred at the original workplace. For the other columns, earnings are cumulated only when they occurred at a different plant
in the same industry 3, at a plant in a different manufacturing industry 4, and outside the manufacturing sector 5, respectively.
Panel B: Earnings are cumulated only when they occurred in the original occupation and workplace column 2, in a different
occupation but at the original workplace column 3, in the original occupation but at a different workplace column 4, and in a
different occupation and workplace, respectively. Control variables are log base year earnings and indicator variables for gender,
foreign nationality, birth year, educational degree (3 categories), tenure (3 categories), plant size (6 categories), broad
manufacturing industry groups (4 categories), and 16 federal states. Standard errors clustered by 20 ISIC Rev.4 industries in
parentheses.

Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00, own calculations.

earnings. Or about 1,500 Euro in absolute terms for a worker with average earnings. The

effect increases by an order of magnitude to 3.11, estimated to be statistically significant,

for earnings at the original plant. This is offset, approximately equally across the different

channels, by reduced earnings in other plants, industries, and the service sector, however. In

other words, robots create inequality between workers who separate and plant stayers.

To measure the role of occupational adjustments, Panel B examines the effects of earnings

across occupations. Did occupational switching help workers to respond to automation? Of

particular interest are the coefficients in columns 2 and 3, which decompose the original plant

earnings effect into impacts for the starting versus other occupations. The split is very close

to 75%. Occupational (and presumably task) transitions within firms play, hence, a large role

for the labor earnings impacts of automation. Columns 4 and 5 complete this picture. While

earnings at other firms decrease in all occupations, the decrease is much more pronounced for

a worker’s original occupation.

6.2 Skill or Task Bias?

In the final step of our analysis, we explore heterogeneous impacts across occupations and

skill groups. A very influential literature has investigated the skill bias of technological change

(Katz and Murphy, 1992). A newer literature has instead emphasized the task bias of techno-
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logical developments.42 This section presents new evidence how the advancements of industrial

robot technology have affected inequality across different occupation and task groups.

The results are contained in Figure 3, where we show the point estimates of interaction terms

of the increase in robot exposure and 95% confidence intervals, based on clustered standard

errors across the 20 IFR industries, for different groups of workers. The regression models are

the same as in the last section for earnings. So we include controls for skill categories, tenure

categories, age, plant size categories, initial industry, and region – and the dependent variable

is cumulated labor earnings.43 Panel A differentiates six broad occupational categories that can

be found among the individual manufacturing workers in our sample. Panel B distinguishes

three skill categories.

In Panel A, for two occupation groups, the estimated impact is economically meaningful

and positive (only the point estimate for the former group is statistically significant at the

conventional 5% level). These are managers and legal specialists, as well as occupations in

the fields of technical science and natural science. This group encompasses, for example,

all kinds of engineers, as well as chemists. Automation through robots has benefited these

cognitive-task heavy and, in general, very skilled occupations.

In the middle of the spectrum, with estimated coefficients slightly positive but very close

to zero, one finds the point estimates for clerical/sales workers and a bundle of occupations,

encompassing e.g. security and transportation workers. The common theme here is that the

task set of those occupations is mostly non-routine and, hence, at least during the period

we study, technically harder to automate. Interestingly, the rents from robots are seemingly

passed on at higher rates to the set of skilled, technical occupations discussed in the preceding

paragraph.

The next lines present the results for a set of occupations, which are suspected to be strongly

exposed to replacement. Indeed, we find significant earnings losses mainly for machine oper-

ators. Industrial robots – by definition – do not require a human operator anymore but have

the potential of conducting many production steps autonomously. Robots therefore directly

substitute the task sets of this group. The point estimate here implies that a manufacturing

worker at the third quartile of exposure sees an earnings reduction of around 25% of initial

annual earnings, relative to a worker at the first quartile of exposure. A qualitatively similar

finding is obtained for workers in processing and maintaining jobs but the effect size here is

only a third of the effect for machine operators.

A second natural way to cut the data is to consider impacts across education groups,

following an enormous literature investigating how technological change affects relative skill

demand. In the German context, because of the prevalence of the apprenticeship system, it
42See Acemoglu and Autor (2011) for a survey of both literatures and Autor and Dorn (2013) or Goos,

Manning, and Salomons (2014) for prominent empirical applications.
43We obtain similar effects for wages but prefer the earnings models since they avoid the classical selection

problem that wages are not observed for non-employed people.
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(a) Occupation: Heterogenous Impacts

(b) Education: Heterogenous Impacts

Notes: The figures report the coefficients of interaction terms of ∆ robots per 1000 workers and dummies indicating the

respective worker group. The outcome variables are 100 x earnings (normalized by earnings in the base year) cumulated over

the 20 years following the base year. In panel A, occupations base on the definition of aggregate occupational fields by the

German Federal Institute for Vocational Education and Training (BIBB) with the following modifications: Sales and clerical

occupations are combined and agriculture, mining, and construction (that would have a point estimate of zero with a huge

standard error) are omitted. In panel B, high skilled is defined as having a degree from a university or university of applied

sciences, and medium skilled is defined as having a vocational training degree. All other educational levels are subsumed as low

skilled. All regressions include the same full set of control variables as in Table 12. The confidence intervals are constructed

from standard errors clustered by 20 ISIC Rev.4 industries.

Figure 3: Heterogeneous earnings effects
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makes sense to split the population not just into two but three skill groups. In Panel B, high

skilled is defined as having a degree from a university or college, and medium skilled is defined

as having a vocational training degree. All other educational levels are subsumed as low skilled

(i.e., high school graduates and high school dropouts). Completed apprenticeship is the typical

profile for manufacturing workers in Germany, accounting for almost 75% of all individuals in

the sample. 16% are low-skilled and 9% high-skilled according to the classification.

The general take-away here is that occupations represent a much more powerful cut of the

data. Although for each of the three skill groups, sample sizes are much larger than for the

occupations split, confidence bands are much wider. The figure shows approximately equal

negative point estimates for low- and medium-skilled workers. In contrast, college-educated

workers see earnings increases.

7 Conclusion

Many people foresee a further rise of robots, artificial intelligence, and other automation tech-

nologies, which can potentially disrupt labor markets. The still small but growing empirical

literature on this topic, most importantly Acemoglu and Restrepo (2019) and Graetz and

Michaels (2018), have documented the (negative) effects of industrial robots on employment

and wages and (positive) impacts on productivity. Nevertheless, there has been little work on

studying the adjustment processes of labor markets and its main actors (workers and firms) in

response to new automation technologies. German administrative labor market data provides

us with a very rare longitudinal perspective over an extended period of time to examine how

workers and firms respond to automation in a context with very high adoption rates.

The results paint a nuanced picture how the strong rise in automation affected workers.

They also point to a strong interaction with labor market institutions. Relatively strong

protections for incumbent workers shift the incidence of job displacement on young workers

and labor market entrants. In order to retain workers whose task set is automated, one expects

transition to new occupations and tasks within employers. We find several pieces of evidence

that these transitions are going on and that they contribute significantly to soften the blow

of automation. Encouragingly, the data suggests that skill upgrading goes hand-in-hand with

those transitions. Such skill upgrading is also observed for young workers and labor market

entrants.

Labor market institutions are an important mediator of the effects of technological advance

on the labor market. How the next generation of advances in AI, machine learning, and

new manufacturing technologies will impact workers, will also depend on the design of these

institutions. We believe these questions should be investigated with, on the one hand, more

empirical evidence on the interaction, but also theoretical work incorporating institutional

aspects and the frictions inherent in labor markets.
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Appendix

(a) German robots.

(b) US robots.

Figure A.1: Industry-level distribution of increase in number of robots

Notes: The figure displays the change in the number of robots per thousand workers by ISIC Rev.4 industries (German Classifi-
cation of Economic Activities, Edition 2008), for the period 1994-2014. Increase in the number of US robots in panel (b) is also
normalized by German industry-level employment.
Source: International Federation of Robotics (IFR) and BHP 7514 v1, own calculations.
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Table A.1: Composition Effects - 2SLS

Total Manufacturing Non-manufacturing

(1) (2) (3) (4) (5) (6) (7)

[A] Employment: % change in total employment between 1994 and 2014

4 robots per 1000 workers 0.0675 -0.6029 -0.6302 -0.4745 0.5869 0.5670 0.7299
(0.137) (0.167) (0.160) (0.162) (0.325) (0.322) (0.329)
[0.181] [0.319] [0.315] [0.297] [0.400] [0.408] [0.466]

Kleibergen-Paap weak ID test 378.041 391.407 383.098 378.041 391.407 383.098 378.041
Hansen J p-value 0.203 0.036 0.022 0.037 0.552 0.547 0.568

[B] E/Pop: 100 x 4 in employment/population between 1994 and 2014

4 robots per 1000 workers 0.0073 -0.0525 -0.0570 -0.0495 0.0461 0.0451 0.0568
(0.062) (0.025) (0.025) (0.027) (0.046) (0.047) (0.046)
[0.032] [0.035] [0.033] [0.030] [0.039] [0.040] [0.046]

Effect of 1 robot 0.3 -1.9 -2.0 -1.7 1.6 1.6 2.0
Kleibergen-Paap weak ID test 378.041 391.407 383.098 378.041 391.407 383.098 378.041
Hansen J p-value 0.671 0.014 0.014 0.017 0.097 0.092 0.109

[C] Wages: 100 x Log-4 in average wage between 1994 and 2014

4 robots per 1000 workers -0.0402 -0.1498 -0.1574 -0.1107 0.1022 0.0940 0.1050
(0.045) (0.052) (0.054) (0.068) (0.040) (0.040) (0.041)
[0.031] [0.083] [0.085] [0.080] [0.065] [0.064] [0.067]

Kleibergen-Paap weak ID test 401.095 395.706 389.132 386.957 412.681 404.781 400.810
Hansen J p-value 0.126 0.053 0.061 0.055 0.105 0.079 0.089

[D] Wagebill: 100 x Log-4 in total wagebill on June 30

4 robots per 1000 workers 0.0589 -0.6783 -0.7243 -0.5250 0.4177 0.3930 0.5595
(0.153) (0.168) (0.163) (0.195) (0.248) (0.244) (0.251)
[0.210] [0.368] [0.366] [0.358] [0.319] [0.325] [0.388]

Kleibergen-Paap weak ID test 378.041 391.407 383.098 378.041 391.407 383.098 378.041
Hansen J p-value 8.269 13.221 14.463 12.888 5.913 5.760 5.212

4 net exports in 1000 e per worker Yes No Yes Yes No Yes Yes
4 ICT equipment in e per worker Yes No No Yes No No Yes

Notes: In all regressions, the variable of interest is the change in robot exposure between 1994 and 2014. The estimates in
panels A, B, and D are based N = 402 local labor market regions (Landkreise und kreisfreie Staedte), while the unit of
observation in the wage estimates in panel (C) are N = 7, 236 region x demographic cells. Demographic cells are defined by
gender, three age groups, and three education groups. We only include cells containing at least 10 observations, and perform the
regressions at the region x demographic cell level including fixed effects for demographic cells. The dependent variable in Panel
D is the log-difference total amount of gross salaries paid to employees subject to social security on June 30 in 1994 and 2014.
All specifications include a constant, broad region dummies, demographic control variables, and employment shares of nine
aggregate industry groups, measured in the base year 1994. The regressions are estimated by applying the 2SLS IV approach
where German robot exposure is instrumented with robot installations in other high-income countries. Standard errors clustered
at the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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Table A.2: Robustness checks.

Employment Average Wages

(1) (2) (3) (4) (5) (6)
Total Manuf. Non-Manuf. Total Manuf. Non-Manuf.

[A] Pre-Trends

4 robots per 1000 workers 0.1076 0.4021 -0.0074 0.0172 -0.0012 0.0251
(0.159) (0.206) (0.121) (0.021) (0.024) (0.027)
[0.115] [0.202] [0.097] [0.023] [0.018] [0.036]

N 326 326 326 5846 5242 5828

[B] 1994-2007

4 robots per 1000 workers -0.1194 -0.5543 0.1925 -0.0883 -0.2220 0.0905
(0.087) (0.185) (0.172) (0.048) (0.079) (0.053)
[0.114] [0.307] [0.171] [0.039] [0.101] [0.091]

N 402 402 402 7235 6898 7231

[C] 2000-2014

4 robots per 1000 workers -0.2600 -0.8499 0.3789 -0.0892 -0.1239 0.0807
(0.177) (0.232) (0.275) (0.063) (0.079) (0.053)
[0.159] [0.384] [0.275] [0.051] [0.081] [0.051]

N 402 402 402 7236 6956 7236

[D] West Germany, OLS

4 robots per 1000 workers 0.0075 -0.4493 0.6486 -0.0403 -0.1437 0.1003
(0.138) (0.175) (0.276) (0.049) (0.062) (0.036)
[0.126] [0.249] [0.400] [0.028] [0.066] [0.065]

N 325 325 325 5849 5545 5845

[E] Federal state dummies, OLS

4 robots per 1000 workers 0.0629 -0.4326 0.6796 -0.0418 -0.1297 0.0911
(0.126) (0.168) (0.274) (0.051) (0.061) (0.038)
[0.166] [0.262] [0.414] [0.029] [0.077] [0.059]

N 402 402 402 7235 6896 7231

[F] 258 Local labor markets, OLS

4 robots per 1000 workers -0.1155 -0.6475 0.5161 -0.0431 -0.0979 0.1053
(0.154) (0.295) (0.216) (0.064) (0.067) (0.052)
[0.170] [0.444] [0.293] [0.036] [0.092] [0.071]

N 258 258 258 4643 4489 4643

[G] Split automotive and other manufacturing in treatment variables

4 robots per 1000 workers 0.0882 -0.4454 0.7125 -0.0338 -0.0958 0.0924
automobile industry (0.113) (0.157) (0.244) (0.048) (0.060) (0.034)

[0.158] [0.288] [0.393] [0.029] [0.070] [0.046]
4 robots per 1000 workers -0.1316 -0.5616 0.0512 -0.0951 -0.1140 -0.0833

other industries (0.205) (0.416) (0.257) (0.075) (0.113) (0.045)
[0.204] [0.524] [0.274] [0.068] [0.112] [0.066]

N 402 402 402 7235 6896 7231

[H] Split automotive and other manufacturing in outcome variables
total manuf. car manuf. other manuf. total manuf. car manuf. other manuf.

4 robots per 1000 workers -0.4467 -5.2065 -0.5326 -0.0960 -0.1207 -0.1785
(0.160) (21.951) (0.242) (0.060) (0.126) (0.106)
[0.281] [18.740] [0.323] [0.070] [0.131] [0.079]

N 402 382 402 6896 2830 6866

Notes: This table presents modifications the baseline specifications for employment and average wages as of columns 1, 4 and 7
of Table 3. The dependent variables are employment growth rates (column 1-3) and log-differences in average wages
(column(4-6). Standard errors clustered at the level of 50 aggregate labor market regions in parentheses. Shift-share standard
errors in brackets.
Sources: IFR, COMTRADE, EU KLEMS, and BHP 7514 v1, own calculations.
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Table A.3: Robots and skill share of people younger than 40

Dependent variable:
100 x 4 Share of workers with Task intensity

university apprenticeship abstract routine
degree degree
(1) (2) (3) (4)

4 robots per 1000 workers 0.0913 -0.0912 0.0660 -0.0581
(0.045) (0.035) (0.030) (0.018)
[0.052] [0.060] [0.041] [0.038]

Notes: In this table, we analyze the effect of robots on occupational quality of younger workers. The estimates are based on
N = 402 local labor market regions (Landkreise und kreisfreie Staedte). The dependent variables is the change in various
measures for occupation quality of workers 40 years old or less between 1994 and 2014: Share of workers with university degree
(column 1), share of workers with apprenticeship degree (2), average abstract task intensity (3), and average routine task
intensity (4). The regressions include the full set of control variables as in column 4 of Table 2. Standard errors clustered at the
level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

Table A.4: Disaggregating the Service Sector

Dependent variable:
100 x 2014 employment in industry / total non-manuf. employment in 1994

(1) (2) (3) (4) (5) (6)

[A] Broad industry groups

Non-Manuf. Agg/Mining Constr. Cons. serv. Business serv. Public sect.

4 robots per 1000 workers 0.7051 0.0223 -0.0026 0.0410 0.5934 0.0356
(0.275) (0.021) (0.027) (0.064) (0.213) (0.036)
[0.442] [0.023] [0.027] [0.051] [0.352] [0.053]

Notes: N = 402. In this table, the employment growth rate in the non-manufacturing sector is the contributions of different
industries. The dependent variables are constructed as 100x the number of employees in 2014 in each industry relative to total
non-manufacturing employment in 1994. Consequently, the coefficients in each panel sum up to the coefficient in column 7 of
panel A, Table 3. The regressions include the full set of control variables as in column 4 of Table 2. Standard errors clustered at
the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

Table A.5: Change in average age

Dependent variable:
change in average age between 1994 and 2014
Manufacturing Non-manufacturing

(1) (2)

4 robots per 1000 workers 0.7049 -2.7519
(0.740) (1.063)
[0.867] [1.722]

Notes: N = 402. The dependent variable is the change in the average age of workers in 1994 vs. 2014.
The regressions include the full set of control variables as in column 4 of Table 2. Standard errors clustered at the level of 50
aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

41



Table A.6: Labor Share and Productivity - by vote shares of left parties

Dependent variable:
% change between 2000 and 2014

Labor productivity Labor share

(1) (2)

[A] Above median share of left party votes in 1992 federal elections

4 robots per 1000 workers 0.0254 -0.0446
(0.265) (0.144)
[0.296] [0.124]

[B] Below median share of left party votes in 1992 federal elections

4 robots per 1000 workers 1.3572 -0.5333
(0.297) (0.115)
[0.657] [0.227]

Notes: N = 198 (Panel A) and 204 (Panel B). The period of analysis is 2000-2014 due to availability of regional GDP and
employee compensation data. The dependent variable in columns (1) is the log change in GDP per worker x 100 and in column
(2) the percentage point change in the total employee compensation (Arbeitnehmerentgelte) over total GDP x 100.
The regressions include the full set of control variables as in column 4 of Table 2. Standard errors clustered at the level of 50
aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, BHP 7514 v1, and Federal Returning Officer, own calculations.

Table A.7: Manufacturing Adjustment - by vote shares of left parties

Dependent variable:
100 x Number of workers in 2014 / total employment in 1994

Incumbent workers Entrants total

Same plant as in 1994 yes no no entered same region, in diff. not
Same industry as in 1994 yes yes no labor mkt. diff. sector region emp.
Same sector as in 1994 yes yes yes after 1994 in 1994 in 1994 in 1994

(1) (2) (3) (4) (5) (6) (7) (8)

[A] Above median share of left party votes in 1994 federal elections

4 robots per 1000 workers 0.3295 -0.2132 -0.0913 0.0062 -0.0285 -0.0352 0.0015 -0.0308
(0.072) (0.104) (0.026) (0.115) (0.038) (0.060) (0.037) (0.233)
[0.139] [0.107] [0.048] [0.222] [0.076] [0.103] [0.071] [0.476]

[B] Below median share of left party votes in 1994 federal elections

4 robots per 1000 workers 0.0528 -0.1117 -0.0885 -0.3396 -0.0658 0.0390 -0.1112 -0.6251
(0.059) (0.036) (0.017) (0.110) (0.020) (0.051) (0.029) (0.189)
[0.058] [0.092] [0.038] [0.201] [0.036] [0.054] [0.056] [0.366]

Notes: N = 198 (Panel A) and 204 (Panel B). In this table, the employment growth rate is additively split up into the
contributions of different groups of incumbent workers or workers that enter the region’s manufacturing sector between 1994 and
2014. The coefficients of columns 1-7 sum up to the coefficient in column 8. The regressions include the full set of control
variables as in column 4 of Table 2. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses.
Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, and Federal Returning Officer, own calculations.
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