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Abstract

New technologies drive productivity growth, yet the distribution of gains may
be unequal. We study how labor market institutions – specifically shop-floor worker
representation – mediate the impact of automation. Combining German individual-
level administrative records with plant-level data on industrial robot adoption, we
find that works councils reduce the separation risk for incumbent workers during
automation events. When labor markets are tight and replacement costs are high,
incumbent workers become more valuable from the firm’s perspective. Consequently,
we document that the moderating effects of works councils diminish. Older workers,
who face greater challenges reallocating to new employers, benefit the most from
organized labor in terms of wages and employment. Finally, we observe that works
councils do not hinder robot adoption; rather, they spur the use of higher-quality
robots, encourage more worker training during robot adoption, and foster higher
productivity growth thereafter.
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1 Introduction

Economists have long acknowledged that technological advances do not necessarily guar-

antee widely shared gains from productivity growth, especially in the short-run (Keynes,

1930; Gordon, 2016). History offers numerous examples of conflicts between workers and

capital owners over how the benefits and costs of new technologies ought to be distributed

(Acemoglu and Johnson, 2023).1 Recently, the rise of automation through robotics and

artificial intelligence (AI) has sparked renewed debates about how workers, employers,

and governments can navigate future labor market disruptions (Furman and Seamans,

2019; Autor, 2024).

A recent literature studies the effects of industrial robots and automation technologies

on employment and wages, uncovering strong heterogeneity across skill groups, occupa-

tions, industries, and firms (e.g. Graetz and Michaels, 2018; Acemoglu and Restrepo,

2020; Bonfiglioli et al., 2022). Acemoglu and Restrepo (2022) find that rapid automation

in the US can account for the largest share of wage declines among workers specialized in

routine tasks. Dauth et al. (2021) detect that negative employment effects of robotization

are concentrated among regions with low levels of unionization in Germany, providing

a hint for the importance of labor market institutions. However, so far, the literature

has paid very limited attention to the roles that labor relations and the relative bar-

gaining power of workers and firms (Stansbury and Summers, 2020) play as mediators of

technological change.

In this paper, we shed new light on the interaction between labor market institu-

tions and automation with the goal of advancing the debate on whether and how policy

responses could be deployed in light of ongoing technological disruption. We focus on

co-determination, in the form of work councils, which grant co-decision-making rights to

organized labor at the establishment level (Addison, 2009; Jäger et al., 2022). In Germany,

works councils represent approximately 40% of the workforce and have potent means to

protect workers’ employment and working conditions. Their power ranges from veto

rights against dismissals (that can only be overruled by labor courts) to co-determination

in matters such as working hours and workplace monitoring.

It is typically assumed that firms automate as long as it is profitable, not internalizing
1For instance, in Britain in the 18th century, the power loom increased productivity and profits for

machine owners but massively replaced skilled weavers and let workers’ wages deteriorate (Acemoglu and
Johnson, 2024).
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the consequences for displaced workers.2 This can lead to only marginally profitable

(’so-so’) automation where the productivity gains from automation are small relative to

the employment and earnings losses for some workers (Acemoglu and Restrepo, 2018).

As works councils protect the interests of the incumbent workforce, their presence and

rights to be involved in procedural changes associated with technology adoption may alter

both the process and consequences of automation. This might lead to different wage and

employment outcomes for workers during automation events in establishments with and

without works councils.

In our analysis, we utilize detailed linked employer-employee administrative data com-

bined with establishment surveys. The data and the institutional context in Germany al-

low us to leverage variation in robot usage between and within plants over time (Plümpe

and Stegmaier, 2023), taking into account the presence of works councils (across plants).3

To this end, we match incumbent workers based on their own and their establishments’

characteristics prior to robot adoption and additionally restricting matches to be within

the same industry, occupation, and works council status. Then we compare the evolution

of matched incumbent workers’ employment outcomes in the wake of robot adoption using

event studies, separately for workers in establishments with and without works council.

By computing the difference between these two distinct ’difference-in-differences’ estima-

tors, we are able to examine the role of works councils during times of robot adoption.

Our rich firm-level data allows us to perform extensive robustness checks to rule out that

results on the effect of robot adoption are confounded by other events happening at the

time of adoption, such as the accompanying adoption of information and communication

technologies (ICT) and firm expansion. Furthermore, our fine-grained worker-level ad-

ministrative records enable us to not only account for workers’ careers before adoption

but also examine which type of workers are most strongly affected by robotization and

protected by works councils. The survey data allows us to complement the main analysis

with an examination of the mechanisms at the plant level, including training for workers,

productivity changes, as well as the direction and intensity of technology.

The first finding of the paper is that automation events increase retention of incumbent

blue-collar workers by decreasing separation probabilities – but only in plants with active
2This can make government intervention welfare improving. Beraja and Zorzi (2024) show that under

frictional reallocation with unemployment spells and the presence of borrowing constraints, the optimal
policy for the government is to slow down automation.

3The German economy has one of the highest robot densities in the world, providing rich variation
in adoption events across plants.
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works councils. Consistent with the idea that works councils, as a form of shop-floor

representation, act in the interest of incumbent workers, we estimate a positive retention

effect of around 4 percentage points. The observed increase in employment stability

during automation events is consistent with rent-sharing manifesting through enhanced

job security rather than wage growth. This pattern aligns with the institutional mandate

of works councils, which grants them direct co-determination rights over worker dismissals

but offers only limited influence over wage increases.4

Older workers are the main beneficiaries of these policies as their employment rates

increase by 2 percentage points in subsequent years. Following automation events, younger

displaced workers adjust successfully and transition smoothly into new employment. In

contrast, older workers are more likely to remain unemployed after an automation-induced

separation, consistent with rising adjustment costs over the life cycle.5

Next, we investigate firms’ incentives to shield incumbent workers from layoffs. In

frictional labor markets, the value of retaining incumbent workers in automating plants

increases in labor market tightness, since replacement and recruitment costs rise as labor

becomes harder to find. Hiring difficulties, therefore, align the incentives of manage-

ment and incumbent workers – represented by works councils. Indeed, sample splits by

firm-specific labor market tightness reveal that works council representation only leads

to higher retention when firm-specific replacement costs are low. In contrast, when re-

placement costs are high, automation leads to similar retention rates in plants with and

without works councils.

Works councils may also engage in bargaining strategies that limit wage cuts for

vulnerable workers, particularly those whose task profile is prone to automation or who

face poor outside options.6 To test this, we examine wages for two groups: (1) older

employees, who face documented difficulties in adjusting and thus have poorer outside

options, and (2) workers performing routine-manual tasks, thus are confronted with high

automation risk. We find that works councils have a sizeable positive wage effect of around

3.5% for these vulnerable workers, driven the prevention of wage cuts.
4Worker representation might affect wage decreases, by reducing or preventing them, a point we

elaborate on below.
5Older workers may have also acquired more task, industry, or firm-specific human capital, which

makes transitions across these categories more challenging.
6While works councils do not have an official mandate to negotiate wages, they can influence the pay

groups within a collective agreement that individual workers are classified into. In addition, their powers
in other fields are strong enough to provide incentives for employers to cooperate also in fields that are
not covered by their statutory powers.
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In the final part of the paper, we investigate by which means works councils mitigate

the negative effects of automation for incumbent workers. When automation-related in-

vestment decisions internalize (part of) the displacement costs, they effectively raise the

profitability threshold for marginal investments. All else being equal, this diminishes the

incentives to implement ’so-so technologies,’ i.e., automation investments that strongly

displace workers while yielding only modest productivity gains (Acemoglu and Restrepo,

2018). Consequently, automation events in firms with worker representation should go

along with larger productivity gains relative to displacement, as those must counterbal-

ance the internalized displacement costs. In line with this argumentation, we find that

robot-adopting plants with works councils experience greater post-adoption productivity

growth than comparable plants without entrenched worker representation.

Using proxies for robot quality, we find that this productivity growth is primarily

driven by higher investment in the quality, but not the quantity, of robots acquired.

Furthermore, we find that adopters with works councils provide more training for their

workers during robot adoption events. These investments into the human capital of in-

cumbent workers likely contribute directly to increased retention. Exploiting the panel

dimension of our data, we can detect ’training spikes’ around the time of adoption, so-

lidifying this interpretation. Before automation events, firms with works councils already

exhibit a higher baseline share of workers who participate in training compared to their

counterparts. During automation events, this gap widens from around 5 percentage points

to about 15 percentage points, before ultimately reverting to around 5 percentage points

in subsequent years. This could be due to co-determination rights enhancing job security

in the face of automation, thereby making workers more willing to invest in firm-specific

skills and engage in training, as argued by Freeman and Lazear (1995).

Our paper contributes to the literature linking firm- and worker-level data to under-

stand how new automation technologies affect labor market outcomes. Robot-adopting

plants typically expand employment (Koch et al., 2021; Hirvonen et al., 2023), often at

the expense of competing firms. On average, workers performing replaceable tasks incur

losses (Bessen et al., 2023), while other workers may experience gains (Acemoglu et al.,

2023), with effects varying by age group (Deng et al., 2023). Acemoglu et al. (2023)

also highlight the importance of controlling for worker sorting through worker fixed ef-

fects, which we incorporate into our event-study analysis. To the best of our knowledge,

there are no previous studies that have explored the role of labor market institutions or
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leveraged variations in the relative decision-making power between workers and firms.

Similarly, equilibrium studies at the local labor market level, such as those by Ace-

moglu and Restrepo (2020) or Adachi et al. (2024), focus on variation across sectors or

skill levels. While Acemoglu and Restrepo (2020) document negative employment effects

in the U.S., Adachi et al. (2024) find an expansion of employment in Japan. Dauth et al.

(2021) identify an interaction between the displacement effect at the local labor mar-

ket level and local unionization rates. In contrast, in this paper we use detailed micro

data on firm-level adoption and individual worker trajectories, employing event studies

to demonstrate the dynamic interaction between institutions and automation.

Jäger et al. (2021) show that board-level participation of workers can increase capital

investment rather than decrease it. Consistent with this, our findings indicate that au-

tomation events are associated with greater productivity growth in establishments that

have shop-floor worker representation. Relatedly, Addison et al. (2001), Jäger et al. (2022),

and others have highlighted a positive correlation between productivity and the presence

of works councils. The presence of works councils has been associated with reduced sep-

arations of (blue collar) workers in work by Hirsch et al. (2010) and a shift of bargaining

power towards employees, as found in Dobbelaere et al. (2024). Budde et al. (2024) find

that elected blue-collar workers as works council representatives place a strong weight on

retention of incumbent workers. Dustmann et al. (2014) have argued that work councils

have facilitated wage decentralization in the German labor market crisis in the mid 2000’s,

elevating employment in Germany. As noted by Jäger et al. (2022) in their survey on the

effects of co-determination "due to a lack of sharp and exogenous variation, the effects

of works councils on worker and firm outcomes remain an open research question." We

contribute to this literature on shared governance by being able to identify an interaction

effect between works councils and technology adoption.

In addition, our empirical strategy – employing event studies with matched worker-

level control groups – is related to papers in the literature studying the cost of job loss

(Bertheau et al. (2023) and Illing et al. (2024)).

In the next section, we describe the data and briefly discuss the institutional back-

ground. In Section 3, we present the empirical models and strategy. Sections 4 and 5

contain the main results regarding employment and wages, respectively. In Section 6, we

present underlying mechanisms with a focus on technology adoption and worker training.

Section 7 concludes.
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2 Data

For our main analysis in Sections 4 and 5, we use a plant-level survey containing informa-

tion on the presence of works councils and robot usage and link it with the employment

biographies of the plants’ entire workforce. Our plant data stem from the Establish-

ment Panel (Bellmann et al., 2021) of the Institute for Employment Research (IAB), a

representative annual survey of around 15,000 establishments in Germany. The survey

comprises data on, among others, general information on the plant, workforce structure

and trends, labor relations and co-determination, as well as information on the plant’s

technical endowment.

Automation and First-Time Robot Adoption Events. The Establishment Panel

is augmented by questions on current topics on a yearly basis. Notably, the wave 2019

contains information on robot usage between 2014 and 2018 which we use to construct

robot adoption events. We first distinguish between robot users and plants that have

never used robots up until 2019. Among the set of robot users, we again distinguish

between plants that newly adopted robots between 2015 and 2018 and incumbent users,

i.e. plants that already used robots in 2014. We follow the seminal studies of Graetz and

Michaels (2018) and Acemoglu and Restrepo (2020) and interpret the event of installing

robots for the first time as an event where firms automate routine-manual tasks.

The recent literature on the plant-level effects of robot adoption emphasizes that robot

adopters are inherently different from non-adopters. As in Koch et al. (2021) for Spanish

manufacturing firms in the period of 1990 to 2016, Deng et al. (2024) show that newly

robot-adopting German plants are positively selected regarding size and productivity.

However, Appendix Table A.1 highlights that plants already using robots in 2014 and

those that adopted them between 2015 and 2018 (i.e., our sample of firms) share common

characteristics. Specifically, both groups are positively selected in terms of employment

size, workforce composition, and productivity, and they face hiring constraints to a simi-

lar extent. Moreover, robot users are predominantly present in the manufacturing sector,

though we also observe increasing robot adoption in non-manufacturing establishments

(27% for new adopters compared to only 17% for early adopters). In contrast, establish-

ments in the manufacturing sector that had not adopted robots by 2018 are, on average,

smaller, employ fewer skilled workers, and are founded more recently. Thus, although we

focus on more recent adopters, the same key factors remain strongly associated with robot
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adoption as in prior periods and studies. Additionally, Plümpe and Stegmaier (2023) show

that the robot density obtained from the survey correlates strongly with commonly used

industry-level data from the International Federation of Robotics (IFR).

Works Councils. Another advantage of the IAB Establishment Panel is that it provides

information on the presence of a works council. The German Works Constitution Act

(BetrVG) stipulates that workers in plants with at least five permanent employees have

the right to elect a works council (Jäger et al., 2022). Since the establishment of a works

council requires an initiative by the employees, by far not all plants have one. 41 percent

of all German workers in 2015 were employed in a plant that had a works council, but this

share varies from nine percent in plants with between five and 50 employees and 89 percent

in plants with more than 500 employees (Ellguth and Kohaut, 2015). Addison (2009)

and Mohrenweiser (2022) provide extensive overviews of the powers of works councils

in Germany and their economic implications. Those powers range from consultation in

events of technology adoption over veto rights in cases of hirings, dismissals, and internal

transfers (that can only be overruled by labor courts) to co-decision rights in matters

that concern, e.g., working hours, workplace monitoring, or performance pay. While they

have no mandate to bargain over wages directly, they can negotiate in which pay group

an individual worker is classified within a firm’s collective agreement. This might be

particularly important if employers plan to downgrade production workers in routine-

manual occupations who directly compete with robots. Since they can stall or even

prevent dismissals, they can also incentivize employers to pay efficiency wages. However,

it is important to notice that works councils are usually interested in the success of their

firms and may in fact be beneficial since they may raise worker satisfaction and awareness

about the economic state of the firm, raise efficiency by improving the communication on

work processes (Freeman and Lazear, 1995), and identify specific training needs.

Administrative Worker Data. Since the Establishment Panel is based on a random

sample of plants with at least one employee subject to social security contributions, it can

be matched with administrative data from the IAB.7 Specifically, we use the Integrated

Employment Biographies (IEB v16.01.00) prepared by the IAB, which comprises the full

universe of all individuals who have held a job subject to social security contributions,
7This link is only available for plants who have either given explicit consent in the 2020 wave of the

survey or have dropped out of the survey earlier.
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marginal employment, or received unemployment benefits.8 The IEB contains spell-level

information on each individual’s jobs, including precise start- and end-dates, occupation,

region, industry, age, schooling. Gross wages, measured in Euro per day, are top-coded

at the contribution ceiling for pension insurance. We employ the procedure introduced

by Card et al. (2013) to impute those censored wages. From this data, we identify all

individuals who were ever employed in one of the plants surveyed in the 2019 wave of

the Establishment Panel. The resulting dataset allows us to examine the complete em-

ployment biographies (employment, wages, occupation, region, industry) and background

characteristics (age, schooling, gender) of all workers who have been exposed to robot

adoption even if they separate from the plant in subsequent years.

We use the occupation code of the current job to classify occupations according to the

popular classification by Blossfeld (1987), which permits us to distinguish blue-collar pro-

duction jobs from others. Within these blue-collar production jobs (Blossfeld occupation

2-5), we are further able to identify workers with a high share of routine-manual tasks

according to the classification from Spitz-Oener (2006) based on the 1991 BIBB/IAB

Employment Survey. As argued in Acemoglu and Restrepo (2018) and Acemoglu et al.

(2023), these workers, who are classified as being in "simple manual blue-collar occupa-

tions" (Blossfeld occupation 2) are most prone to being directly affected by automation,

as their job contains a high share of potentially replaceable routine tasks.9 We also use

the occupation codes to quantify each establishment’s occupational employment structure

in order to merge a novel measure of plant-specific labor market tightness. This measure

was provided by Bossler and Popp (2024) and is calculated as the ratio of the number

of job seekers to the number of vacancies, both taken from official statistics. Since not

all vacancies are registered with the employment agency, Bossler and Popp (2024) use

plant-level survey data to correct for varying penetration rates by skill levels. The result

is a measure of labor market tightness that varies by both the local labor market and

detailed 5-digit occupation.
8Access to this data is regulated by Section 75 of the German Social Code (Book X).
9Compared to the overall mean share of around 51% routine tasks across all blue-collar production

workers in our main sample (Blossfeld occupation 2-5), routine-manual production workers (Blossfeld
occupation 2) have a 14 percentage points higher share of such tasks (see Table 2 in Section 3 for details).
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3 Event-Study Models with Double and Triple Differ-
ences

Our empirical strategy examines the impact of firms’ automation events on directly af-

fected incumbent workers and investigates whether works councils can moderate these

consequences. To this end, we borrow from the current literature on worker-level effects

of job displacement due to mass layoffs (e.g. Lachowska et al., 2020; Bertheau et al., 2023).

Our approach is motivated by recent papers like Schmieder et al. (2023) and Illing et al.

(2024), which use propensity score matching to identify a control group of comparable

never-treated workers in comparable plants prior to running an event-study analysis. This

has the advantage that we obtain pairs consisting of a worker in a robot-adopting plant

and a matched control worker in a never-adopting plant, who are both assigned a common

event date. Schmieder et al. (2023) point out that this avoids the problems of two-way

fixed effects models when treatment timing varies (as expounded by Goodman-Bacon,

2021).

To ensure comparability between workers in robot-adopting and non-adopting plants,

we perform a 1-nearest neighbor propensity score matching with a caliper (Stuart and

Rubin, 2008), based both on worker and plant characteristics prior to adoption. These

characteristics are (log) daily wage, job experience, plant size, and pre-estimated AKM

plant fixed effects (Abowd et al., 1999; Bellmann et al., 2020). Additionally, we force work-

ers from matching pairs to have the same gender, nationality, contract status (full-time,

part-time), and are in the same occupation of in-total 4 groups, according to Blossfeld

(1987). Moreover, matched workers are from establishments in the same aggregate indus-

try and with the same work council status. In this way, we can account for the sorting of

workers into firms regarding firm-level institutions, such as co-determination. Table 1 con-

tains an overview and additional details for all variables, separately by type of matching

for which they are used (propensity score and exact matching).

To rule out that our results are influenced by workers who have been hired endoge-

nously in the course of implementing the new robot technology (e.g. experts on robot use

or maintenance), we restrict our sample to all incumbent workers employed at the same

plant at least two years prior to robot adoption. Additionally, we restrict our sample to

blue-collar production workers (as defined in Blossfeld (1987)), as those are most likely

directly affected by robotization, and who are aged between 25 and 60 in the year of robot

adoption. This leaves us with yearly observations of 17,721 individuals in 718 plants.
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Table 1: Matching variables

Matching type Variable Additional description
Propensity score matching (Log) Daily wage Gross wages; Censored top-coded

wages above the contribution ceiling
for the pension insurance are imputed
following Card et al. (2013).

Job experience In years
Plant size Number of regular employees
AKM plant fixed effects Pre-estimated in period 2003-2010 by

Bellmann et al. (2020)
Exact matching Sex Male, female

Nationality German, non-German
Contract type Full-time, part-time
Blossfeld occupation simple manual (2), qualified manual

(3), technicians (4), or engineers (5)
according to Blossfeld (1987)

Aggregate Industry 43 distinct industries (13 manufactur-
ing industries)

Missing AKM plant fixed effect Missing, non-missing
Works council status Works council, no works council

Notes: This table contains variables used for the matching approach described in Section 3. The matching
type refers to whether the variable is used to calculate the propensity score for the 1-nearest neighbor
matching or the subsequent restriction of matches having identical characteristics, for instance, having
the same gender. If not stated otherwise, variables are measured in the year prior to the event of robot
adoption.

Table 2 shows descriptive statistics among matched workers – for all production work-

ers, as well as separately for the subset of older and routine-manual workers. Reassur-

ingly, the table shows that across groups, workers in the robot-adopting and non-adopting

plants have comparable demographics, education profiles, and perform similar tasks. This

leads us to conclude that the matching procedure accounts for a wide range of observ-

able worker-level characteristics that could potentially bias the results. As discussed in

Section 2 and in line with previous findings, adopting firms tend to be larger, which we

account for in our estimation strategy described below.

In the second step, we quantify the effect of an automation event on incumbent work-

ers. As a starting point, consider a difference-in-differences (DiD) design of the following

form:

Y g
it = αg +

3∑
τ=−4;τ ̸=−1

βg
τ × Iτ ×Rj(i) +X ′

jtϕ
g + ηgτ + ηgt + ηgi + ug

it (1)
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Table 2: Summary statistics of matched workers

Production workers Older workers Routine-manual workers
Adopters Non-Adopters Adopters Non-Adopters Adopters Non-Adopters

Age 43.79 45.02 57.29 57.40 44.20 45.83
(9.87) (10.00) (1.67) (1.71) (9.85) (9.66)

No degree 0.05 0.06 0.06 0.08 0.09 0.11
(0.22) (0.24) (0.24) (0.27) (0.28) (0.31)

Vocational degree 0.86 0.85 0.86 0.83 0.89 0.87
(0.35) (0.36) (0.35) (0.37) (0.31) (0.34)

College degree 0.09 0.08 0.08 0.08 0.02 0.02
(0.28) (0.27) (0.27) (0.28) (0.14) (0.15)

Simple manual 0.46 0.46 0.49 0.50 1.00 1.00
(0.50) (0.50) (0.50) (0.50) (0.00) (0.00)

Qualified manual 0.35 0.36 0.33 0.33 0.00 0.00
(0.48) (0.48) (0.47) (0.47) (0.00) (0.00)

High-skilled manual 0.19 0.18 0.17 0.17 0.00 0.00
(0.39) (0.38) (0.38) (0.37) (0.00) (0.00)

Share routine tasks 0.53 0.50 0.56 0.51 0.67 0.62
(0.22) (0.19) (0.24) (0.19) (0.16) (0.12)

Share routine 0.49 0.45 0.52 0.46 0.64 0.59
manual tasks (0.26) (0.23) (0.27) (0.23) (0.17) (0.14)
Tenure 13.40 15.07 17.87 19.29 12.87 15.17

(8.34) (8.65) (9.26) (8.93) (8.03) (8.47)
Log daily wage 4.68 4.70 4.64 4.69 4.55 4.58

(0.43) (0.45) (0.47) (0.48) (0.35) (0.38)
Number of 451.69 361.48 424.42 329.41 519.21 409.84
employees (367.42) (401.43) (354.72) (353.53) (405.87) (444.44)
Firm-level share 0.76 0.75 0.77 0.76 0.77 0.76
of production workers (0.11) (0.14) (0.11) (0.14) (0.09) (0.12)

Observations 8823 8898 1409 1788 4076 4124

Notes: This table displays means and standard deviations for matched workers in robot adopting and
non-robot adopting plants in the year prior to adoption. The first two columns refer to the entire sample
of production workers aged 25 to 60 in the year of adoption and being employed at least two years prior
to robot adoption in the plant. The middle (last) two columns refer to the sub-sample of workers aged 55
and older (routine-manual workers). The number of observations differs slightly between the treatment
and control group due to the post-matching restrictions on firm attachment. Production workers are
defined as being in Blossfeld occupation 2-5. Routine-manual workers are defined as being in Blossfeld
occupation 2. Simple, qualified, and high-skilled manual refer to Blossfeld occupations 2, 3, and 4+5
respectively. The shares of routine and routine-manual tasks are calculated following Spitz-Oener (2006)
based on the 1991 BIBB/IAB Employment Survey.

for individual i in calendar year t, period τ , and plant j. As outcome variables, we use

an indicator variable that equals 1 if a worker is employed at least one day per calendar

year (either at the initial plant or anywhere) and mean log daily wage.

To assess the differential consequences of the automation event for workers in plants
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with (g = WC) and without works councils (g = NWC), we run separate regressions

for both groups g. Although this already allows us to visually compare the effect of

automation across both groups, the visual representation would suffer when conducting

further sub-group analyses, such as distinguishing between age groups.

Thus, to directly show and quantify the differences between plants with and without

works councils, we employ a triple difference (DiDiD) design (as discussed by Olden and

Møen, 2022). This has the advantage that we obtain point estimates and confidence

intervals for the differential effects of the automation event at each point in time before

and after the event.

This estimation equation takes the form:

Yit = α +
3∑

τ=−4;τ ̸=−1

δτ × Iτ ×Rj(i) ×Gj(i) +X ′
jgtξ + ητ + ηt + ηi + ϵit (2)

where Gj(i) indicates whether a plant has a works council. The observation period

spans from four years before to three years after robot adoption, i.e., τ ∈ {−4, 3}. Rj

indicates robot adoption at τ = 0, and Iτ denotes the relative time to automation. To

account for differences between workers and plants, we include period ητ , calendar year

ηt, and individual fixed effects ηi, plus (age-45) squared as controls (Xjt). In the DiDiD

design, Xjgt also includes all lower-order interaction terms between Iτ , Rj(i), and Gj(i).

δτ shows the causal effect of automation in works council versus non-works council plants

under the assumptions of (i) parallel trends and (ii) no anticipation. (i) requires the trend

between plants with and without works councils to evolve similarly with and without robot

adoption. Although not directly testable, we assess this by visually inspecting if our pre-

trend coefficients are different from zero. By restricting our sample to incumbent workers

with at least two years of tenure, we ensure our estimates do not suffer from bias due to

anticipation and selection into treatment. Further, by restricting matches within works

council groups, we account for the selection into both robot adoption and works council

plants. We follow Abadie and Spiess (2022) and cluster standard errors at the level of

matched worker pairs.

Remaining Threats to Identification. Our matched event study design ensures that

we compare treated individuals with very similar never-treated individuals in terms of in-

dividual and plant characteristics. Inspecting pre-trends reveals that their careers evolved

in a similar way before the event. However, this does not necessarily rule out that robot
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adoption might be accompanied by other events that affect potential worker outcomes

like investments, changes in management strategies, or demand shocks. While this may

complicate the causal interpretation of robot adoption, our main interest lies in the mod-

erating role of worker representation. This requires the somewhat weaker assumption that

the accompanying events of robot adoption are similar between plants with or without

a works council. Another concern is that firms with works councils differ in many ways

from firms without works councils and that those differences also moderate the effects

of automation. On average, plants with works councils are larger, more productive, and

pay higher salaries than plants without (Mohrenweiser, 2022). The most important de-

terminant of having a works council is size. Since many large plants had adopted robots

already before 2015 and since and we match workers based on the size of their plant,

our sample consists of many medium-sized plants. Additionally, our matching approach

ensures that we are not systematically comparing small and large firms. Still in a later

section, we conduct a robustness check in which we account for a possibly confounding

influence of firms’ size over time – which yields results that are very similar to the main

results. In a similar vein, we control for contemporaneous investments in ICT and real

estate, where the latter serves as a proxy for a general production expansion.

4 Retention and Employment Effects

4.1 Main Effects

We begin by showing how automation – induced by the adoption of robots at the plant

level – affects incumbent workers’ turnover and employment. Figure 1 displays the effect

of robot adoption separately estimated for matched workers in plants with (blue) and

without (red) works councils using the difference-in-differences specification in Equation 1.

Panel (a) shows that robot adoption has an, on average, positive effect on retention –

but only in plants with a works council. For all types of plants, separation rates increase

over time: after 3 years, on average 12% of the blue-collar workforce have left their

initial plant. However, workers in automating plants with a works council are around

4 percentage points more likely to remain in their initial establishment relative to their

matched counterparts in non-automating plants with a works council.

Previous studies, such as Acemoglu et al. (2023) and Dixon et al. (2021), find that

robot-adopting firms expand employment. Our results complement these findings by
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Figure 1: Employment effect of robotization by works council status

(a) Retention probability (b) Employment probability

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the
initial plant (in Panel (a)) or anywhere (in Panel (b)). Employment is measured as the probability of
being employed at least one day per calendar year. All sub-figures display the difference-in-differences
(DiD) estimates obtained from Equation 1, separately for workers in plants with and without works
council. The dashed vertical line marks the event of robot adoption. Vertical bars indicate 90% confidence
intervals based on robust standard errors clustered at the matching pair level. The sample of workers is
restricted to individuals aged 25 to 60 in the year of adoption, being employed at least two years prior
to robot adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To ensure
comparability, workers in robot-adopting plants are matched to similar counterparts in non-adopting
plants. The matching process is described in detail in Section 3.

showing that, in Germany, incumbent workers benefit from this increase in employment

prospects – but only when worker representation is present. These results are also con-

sistent with Dauth et al. (2021), who find that industry-level robot exposure increases

worker retention on average and more strongly in more unionized labor markets. Our

plant-level results indicate that also works councils facilitate sharing the gains from au-

tomation by enhancing job security for incumbent workers. In the task-based automation

framework developed by Acemoglu and Restrepo (2018), changes in labor demand can be

decomposed into a negative displacement effect and a positive productivity effect stem-

ming from cost reduction generated by automation. Worker representation appears to

amplify the productivity effect, which offsets displacement and reduces net separations

among incumbent workers. In line with Budde et al. (2024), we find that shop-floor

worker representation enhances job security rather than wages. This reflects institutional

features that grant works councils significant authority over restructuring and layoffs but

limited influence on wage-setting.

In Panel (b), we investigate the consequences for total employment across all firms

for workers exposed to automation. Starting with establishments without worker repre-

sentation, it is visible that the employment prospects of workers exposed to firm-level

robotization gradually decrease up to around 1 percentage point after 3 years, suggest-
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ing that those workers separating from automating establishments are displaced by the

robotization events. In contrast, with worker representation, exposure to firm-level au-

tomation is estimated to have no total employment effect for incumbent workers. For

them, increased job stability cancels out separation effects from displacement.

4.2 Heterogeneity by Worker Characteristics

We continue by examining heterogeneity with respect to worker type. We begin by focus-

ing on older workers, who typically adapt less easily to new technologies (Behaghel et al.,

2014). Employers may prefer to substitute these workers with younger ones if new tasks

favor younger workers (Battisti et al., 2023). Consequently, works councils may prioritize

efforts to support older workers, who also face greater barriers to finding new employment

(Aubert et al., 2006).

To study heterogeneity and present the results in a comprehensible way, we make

use of the triple-difference (DiDiD) design specified in Equation (2). To benchmark the

results and aid interpretation, Panels (a) and (b) in Figure 2 replicate the findings from

Figure 1, showing the differing impacts of automation in firms with and without worker

representation. Each line in Panels (c) to (f) reflects the results of a separately regressed

DiDiD specification from Equation (2).

To see whether older employees benefit more from works councils, we divide the sample

of production workers into employees under 55 years and those 55 and older. Panel (c) in

Figure 2 shows that both age groups are similarly likely to remain in their initial plant,

indicating that the efforts of works councils to reduce separations have no direct age bias.

However, unlike young workers, who have low adjustment costs once displaced, works

councils increase the probability of being employed for older workers by 2 percentage

points in the long run. These effects are economically significant given that older workers

are, on average, non-employed with a probability of around 2.5% three years after the

adoption of robots.10

10These effects are not driven by early retirement as we only consider spells of individuals subject to
social security contributions.
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Figure 2: Employment effect of works council by workers’ characteristics

(a) Retention probability (b) Employment probability

(c) Retention probability (by age) (d) Employment probability (by age)

(e) Retention probability (by occupation) (f) Employment probability (by occupation)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ employment outcomes. Employment is measured as the probability of being employed
at least one day per calendar year, either at the initial plant (in Panel (a), (c), and (e)) or anywhere (in
Panel (b), (d), and (f)). All sub-figures display the triple differences (DiDiD) estimates obtained from
Equation 2, either for the whole sample or separately estimated across worker groups. In Panel (c) and
(d), workers are divided into groups based on whether they are below 55 or between 55 and 60 in the year
of robot adoption. In Panel (e) and (f), the division is based on workers’ occupation in the year prior to
adoption. Routine manual workers (RMW) are defined as being in Blossfeld occupation 2. The dashed
vertical line marks the event of robot adoption. Vertical bars indicate 90% confidence intervals based on
standard errors clustered at the matching pair level. The sample of workers is restricted to individuals
aged 25 to 60 in the year of adoption, being employed at least two years prior to robot adoption in the
plant, and working in production (i.e. Blossfeld occupations 2-5). To ensure comparability, workers in
robot-adopting plants are matched to similar counterparts in non-adopting plants. The matching process
is described in detail in Section 3. Results from a difference-in-differences (DiD) estimation showing the
effect of robot adoption separately by plant with and without works council can be found in Figures 1,
as well as C.2, and C.3 in the Appendix.
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In the Appendix in Figure C.2, we show the corresponding DiD results of this analysis.

This decomposition reveals that the positive retention effect for older workers is partly

driven by increased separations in automating establishments without worker represen-

tation, implying direct protection from layoffs by works councils for this group (Panel

(b)). In addition, Panel (d) in Figure C.2 highlights the vulnerability of older workers to

automation events. In the absence of works councils, their probability of being employed

reduces by around 3 percentage points 3 years after robot adoption. In other words, older

workers are the primary beneficiaries of works councils’ efforts to reduce separations.

Another group of workers who face greater challenges recovering from involuntary job

loss are those in routine-intensive occupations (Blien et al., 2021; Cortes, 2016). Panels (e)

and (f) in Figure 2 divide the sample of production workers into routine-intensive and non-

routine occupations. Consistent with our previous results regarding age and the findings

of Budde et al. (2024), who show that worker representatives benefit workers of all types11,

we find no inherent bias in the effect of works councils on job protection. Instead, we

observe an equal increase in retention for both routine-intensive and non-routine workers.

The corresponding DiD results in Figure C.3 further support this conclusion.

4.3 Labor Market Tightness

Next, we examine how labor market tightness from the employers’ perspective influences

separations and the role of worker power. In models incorporating labor market tightness,

the value of retaining workers to the firm increases as replacement and recruitment costs

rise (Kline et al., 2019; Jäger and Heining, 2022). Consequently, labor market tightness

is expected to enhance the alignment of goals between management and worker repre-

sentation. Building on this reasoning, we test the hypothesis that works councils have

a reduced retention effect in tight labor markets where labor is scarce. Put differently,

the intuition is that works councils play a smaller role for incumbent workers when firms

already have strong incentives to minimize separations.

To measure labor market tightness, we use a fine-grained, plant-specific measure de-

veloped by Bossler and Popp (2024). This measure is calculated as the ratio of vacancies

to job seekers for each 5-digit occupation and local labor market, weighted by the plant’s

employment structure. Using this measure, we categorize establishments based on their

local labor market tightness – a proxy for replacement and hiring costs – in the year prior
11Budde et al. (2024) estimate the effects of blue-collar worker representatives and find homogeneous

retention effects across groups.
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Figure 3: Employment effect of works council by labor market tightness

(a) Retention probability (25th percentile) (b) Employment probability (25th percentile)

(c) Retention probability (50th percentile) (d) Employment probability (50th percentile)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ employment outcomes. Employment is measured as the probability of being employed
at least one day per calendar year, either at the initial plant (in Panel (a) and (c)) or anywhere (in Panel
(b) and (d)). All sub-figures display the triple differences (DiDiD) estimates obtained from Equation
2, either for the whole sample or separately estimated across worker groups. Workers are divided into
groups based on plants’ local labor market tightness (LMT) in the year prior to adoption (cutoff is the
25th percentile in Panel (a) and (b), 50th percentile in Panel (c) and (d)). This measure is obtained
from Bossler and Popp (2024) and defined as the ratio of the number of vacancies to job seekers at the
occupation-region level, weighted by plants’ employment shares. The dashed vertical line marks the event
of robot adoption. Vertical bars indicate 90% confidence intervals based on standard errors clustered at
the matching pair level. The sample of workers is restricted to individuals aged 25 to 60 in the year
of adoption, being employed at least two years prior to robot adoption in the plant, and working in
production (i.e. Blossfeld occupations 2-5). To ensure comparability, workers in robot-adopting plants
are matched to similar counterparts in non-adopting plants. The matching process is described in detail in
Section 3. Results from a difference-in-differences (DiD) estimation showing the effect of robot adoption
separately by plant with and without works council can be found in Figures C.4 and C.5 in the Appendix.

to robot adoption. Plants are classified as operating in a slack labor market (labeled ’low

LMT’ in the upcoming figures) if their plant-specific labor market tightness is above the

75th percentile when ranked by how slack market conditions are. For robustness, we also

perform the classification using the median as a cutoff.

Panel (a) in Figure 3 reveals that works councils increase worker retention during

automation events only when labor markets are slack, that is when replacement costs

for the plant are low. Thus, intuitively, when labor is abundant and firms face stronger

18



incentives to replace workers with robots, worker representation has the largest impact on

job security. As argued in the previous section, the positive retention coefficients in slack

labor markets suggest that worker representation enables productivity gains to dominate

displacement effects, manifesting as enhanced job security for incumbent workers.12

Next, we investigate monotonicity using the median as a cutoff instead of the 75th

percentile of plants’ labor market tightness. Panel (c) in Figure 3 and Figure C.5 in

the Appendix demonstrate that while the moderating effect of works councils remains

visible, it is less pronounced. This finding suggests a monotonic relationship, where the

moderating effect of works councils is strongest in the slackest labor markets – consistent

with the argumentation that replacement costs increase firms’ efforts to reduce turnover

and thus align the incentives of employers and their workforce.

4.4 Sensitivity and Robustness

To ensure that our results are not driven by the choice of the outcome variable or con-

founding effects of robot adoption or the presence of works councils, we conduct several

robustness checks which are presented in the Appendix and briefly discussed below. Our

main dependent variable so far was the employment status of a person, defined as being

employed for at least one day per calendar year, either at the initial plant or anywhere.

We complement this by also taking into account the intensive margin and using the num-

ber of days employed in any year in Appendix Figure D.6 and Figure D.7.13 The baseline

positive effect on retention probability of 4 percentage points corresponds to around 15

working days. As before, older workers seem to be the main beneficiaries of works councils

during automation events. While the retention effect is again only slightly higher for older

production workers (Panel (c)), they have stronger employment effects compared to their

younger counterparts when using days in employment as an outcome variable (Panel (d)).

As mentioned before, the probability of plants having a works council and adopting

robots strongly increases with size (Mohrenweiser, 2022; Deng et al., 2024). To rule

out the possibility that this influences our results, we account for differential trends by

establishment size. More specifically, we address this by including a dummy variable

for above- versus below-median-sized plants, fully interacted with event time indicators,
12The decomposition in Appendix Figure C.4 in Panel (d) shows that the total employment effects

of automation are similar across establishments with and without works councils in tight labor mar-
kets, consistent with workers having better outside options in tight markets regardless of works council
protection.

13Non-employment is defined as zero days employed.
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in our main specification. This takes into account the potentially confounding effect of

being employed in a large firm over the course of robot adoption. Panel (b) in Appendix

Figures D.8 and D.9 demonstrates that the results remain consistent with the baseline.

Furthermore, we leverage additional information from the establishment survey to ac-

count for events that are likely to accompany robot adoption events and thus potentially

confound our results by influencing worker turnover. First, we test robustness by including

a dummy variable for accompanying investments in real estate (Panel (c)) – a proxy for

firm expansions – and investments in information and communication technologies (ICT)

(Panel (d)). Again, both dummy variables are fully interacted with event time indicators.

Panels (c) and (d) in Figure D.8 show that these adjustments lead the positive retention

effects to rather build up over time. Intuitively, both types of investment are positively

correlated with the timing of robot adoption, impacting the estimated coefficients down-

wards. Reassuringly, after this initial phase, the positive retention effects become larger,

but also more imprecise.

5 Wage Effects

Works councils lack direct wage bargaining rights. However, besides job security – an-

alyzed in the previous section – works councils can influence wages indirectly through

negotiations over classifications of workers into pay grades (Mohrenweiser, 2022) and,

particularly, prevent workers’ demotion to lower pay grades. In the context of automa-

tion, we therefore test the hypothesis of whether works councils protect wages and prevent

cuts, especially for vulnerable subgroups. This analysis complements the rent-sharing lit-

erature surveyed in Card et al. (2018), which typically examines positive firm shocks like

innovation events that are expected to increase (or at least maintain) workers’ wages.

We estimate the same set of event studies as in the previous section – and described

in Equations (1) and (2) in Section 3 – using log wages as the outcome variable. To be

able to capture the evolution of wages within establishments, we have to concentrate on

observations of workers who are employed at their initial plant. Thus, our results should

be interpreted as the wage effect of works councils during automation for those workers

who remain at their initial establishment, at least for some time.

First, Figure 4 shows the results from the triple difference specification (Equation (2))

for the entire workforce (Panel (a)) as well as for all production workers (Panel (b)).

For both groups, we find no wage effects of works councils during automation. This
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Figure 4: Wage effect of works councils by workers’ characteristics

(a) Log wage (all workers) (b) Log wage (main sample)

(c) Log wage (for older workers) (d) Log wage (for routine-manual workers)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption
on workers’ log daily wage in the initial establishment. Panel (a) to (d) display the triple differences
(DiDiD) estimates obtained from Equation 2, separately estimated across worker groups. For Panel (a),
the sample of workers is restricted to individuals aged 25 to 60 in the year of adoption and being employed
at least two years prior to robot adoption in the plant. In all other panels, the sample is restricted to
production workers (i.e. Blossfeld occupations 2-5). For Panel (c), the sample is additionally restricted
to workers aged 55 and above in the year of robot adoption. For Panel (d), the restriction is based
on whether workers’ occupation are characterized to be routine-manual (RMW, referring to Blossfeld
occupation 2) in the year prior to the event. The dashed vertical line marks the event of robot adoption.
Vertical bars indicate 90% confidence intervals based on robust standard errors clustered at the matching
pair level. To ensure comparability, workers in robot-adopting plants are matched to similar counterparts
in non-adopting plants. The matching process is described in detail in Section 3.

is in line with the literature, which, although not differentiating by firm-level policies,

has found only limited effects of automation on wages at adopting firms for all workers

on average (e.g., Koch et al., 2021; Dixon et al., 2021). Next, we investigate the wage

effects separately for older production workers (Panel (c)) and workers in routine-manual

occupations (Panel (d)), as in the previous section. For both groups, there is evidence

that works councils increase wages during automation events, although the estimates

suffer from imprecision for older workers. For workers with routine-manual task profiles,

this effect is both economically and statistically significant, with a relative increase in

wages of around 3.5%.
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Figure 5: Wage effect of automation in plants with vs. without works council – by age
and occupation

(a) Log wage (for younger workers) (b) Log wage (for older workers)

(c) Log wage (for non-routine-manual workers) (d) Log wage (for routine-manual workers)

Notes: This figure shows the effect of robot adoption in plants on workers’ log daily wage in the initial
establishment. All sub-figures display the difference-in-differences estimates obtained from Equation 1,
separately for workers in plants with and without works council. The sample of workers is restricted
to individuals aged 25 to 60 in the year of adoption, being employed at least two years prior to robot
adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). For Panel (a) and
(b), workers are divided into groups based on whether they are below 55 or between 55 and 60 in the
year of robot adoption. For Panel (c) and (d), this division is based on whether workers’ occupation is
characterized to be routine-manual (RMW, referring to Blossfeld occupation 2) in the year prior to the
event. Vertical bars indicate 90% confidence intervals based on robust standard errors clustered at the
matching pair level. To ensure comparability, workers in robot-adopting plants are matched to similar
counterparts in non-adopting plants. The matching process is described in detail in Section 3.

To see if these positive wage effects of works councils for older and routine-manual

workers are driven by excess positive wage growth or rather an avoidance of wage cuts, we

estimate the difference-in-differences specification as in Equation 1 separately for each of

the two vulnerable subgroups. Panel (b) and (d) in Figure 5 clarify that the positive wage

effect of works councils is driven by the prevention of wage cuts. Both older and routine-

manual workers face a siginficant reduction of wages in plants without works councils,

while wages for both groups remain relatively constant in plants with works councils.

In contrast, wages of younger workers (Panel (a)) and workers in non-routine-manual

occupations (Panel (c)) are not affected by robot adoption overall, neither in plants with
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or without works councils. This leads us to conclude that works councils play a decisive

role in the earnings prospects of vulnerable subgroups, not only through increased job

security – as highlighted in Section 4 – but also by preventing wage cuts.

6 Mechanisms: Technology Direction and Training

In this section, we investigate the mechanisms through which organized labor interacts

with automation decisions at the plant level. We do so by comparing features of the plants

regarding the direction of technology adoption, productivity, and training of similar first-

time robot-adopting plants that differ in their works council status. While this comparison

of plants by works council status does not identify causal effects it reveals meaningful

descriptive patterns.

Data and Estimation. In addition to the information on the presence of works councils

and the number of robots used between 2014 and 2018, the IAB Establishment Panel

contains variables that capture the direction of technology adoption, as well as value-

added measures (as a proxy for productivity) and worker training. For the year 2018, we

have information on the robot density and the type of robot installed. Plants were asked

about the number of robots (i) with a price below 50,000 Euro, which we refer to as ’cheap

robots,’ and (ii) that are separated from the workforce with a fence, which we call ’cage

robots.’ Cage robots are large, versatile, and highly productive – but need to be separated

from the workforce to prevent hazards (Taesi et al., 2023). Cheap robots, by contrast,

are more likely to be collaborative robots, or ’cobots,’ which demand a high degree of

human-machine interaction (Gerbert et al., 2015; Plümpe and Stegmaier, 2023) and are

constructed with a focus on human safety (Gurgul, 2018). By linking administrative

data, we observe changes in employment, productivity, provision of training, and the skill

structure of the plant over time and use information on size, industry, and organization

as control variables.

For every first-time robot-adopting plant j in industry i we estimate the following

regression across different outcomes:

Yj = βWCWCj + Ii(j) +Xj + ej, (3)

The estimand of interest is βWC and captures the difference in features of the au-

tomation process for similar first-time robot adopters depending on their works council
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status. Ii(j) are industry fixed effects, which ensure that βWC is identified only from com-

paring plants within the same aggregate industry, controlling for potentially confounding

industry-specific trends. With Xj we further control for plant size (10 groups), the share

of high-skilled workers, and the year of foundation. For outcomes that we observe repeat-

edly over time, we run this regression in pooled cross-sections around the year of robot

adoption, which are either prior to adoption (τ < −1), during adoption (τ = −1, 0), or

after adoption (τ > 0).14

Results. We start by relating the presence of co-determination to the type of automa-

tion technology adoption. Panel A in Table 3 contains the estimates for βWC from the

cross-sectional regression. Column 1 shows, that there is no difference in robot density,

measured by the number of robots per worker in 2018. In columns 2 and 3, we distinguish

different types of robots. Plants with works councils have a 17 percentage points higher

share of cage robots, which are commonly associated with higher productivity (Gurgul,

2018).

Consistent with a mechanism in which automating firms with works councils employ

not more but higher quality robots, they appear to have fewer cheap (collaborative)

robots installed, although this result is not statistically significant. In a standard model

of automation decisions, as the one by Acemoglu and Restrepo (2018), the profitability of

investments is the main concern of firms. Internalizing part of the displacement costs and

weighting the welfare of incumbent workers could create a wedge into the decision, shifting

up the threshold for automation investments with a positive return. Thus, conditional on

robot adoption, plants with works councils should have higher productivity gains.

We test this in Panel B, where we study the log of value added per worker as a measure

of labor productivity, leveraging also the time dimension of the data. Already prior to

robot adoption, plants with works councils are more productive, in line with previous

findings (Addison et al., 2001; Mueller and Neuschaeffer, 2021), although the difference is

statistically insignificant. This difference increases in the aftermath of robot adoption and

becomes highly statistically and economically significant. The estimates imply that the

difference in productivity increases from around 0.11 log points to more than 0.26, or 30%.

Overall, these findings align with the idea that works councils drive up the requirement for
14Pooling years ensures a sufficient number of observations as many plants have missings across years.

We account for plants having multiple observations per year pool by clustering robust standard errors
at the plant level. Additionally, we only include plants that have at least one observation in every year
pool. We use up to 4 years before and up to 2 years after adoption.
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Table 3: Firm-level mechanisms

Panel A: Equipment Robots/worker Share cage Share cheap

Works council 0.006 16.716∗∗ -9.250
(0.008) (8.427) (8.887)

Mean of Y 0.08 67.81 37.05
SD of Y 0.17 45.93 46.53
R-squared 0.66 0.40 0.22
Observations 187 187 187

Panel B: Log value added τ<−1 τ−1,0 τ>0

Works council 0.114 0.151 0.261∗∗∗

(0.155) (0.103) (0.089)

Mean of Y 10.97 10.97 10.93
SD of Y 0.71 0.72 0.69
R-squared 0.37 0.43 0.42
Observations 203 191 171

Panel C: Training τ<−1 τ−1,0 τ>0

Works council 4.922 14.536∗∗∗ 6.960
(5.906) (5.440) (5.539)

Mean of Y 29.16 30.30 26.62
SD of Y 32.19 31.51 32.41
R-squared 0.14 0.15 0.12
Observations 264 266 249

Notes: This table shows results from regressions of various outcome variables on an indicator whether
a plant has a works council. Panel A shows the results for robot density (robots per worker), the
share of cheap (price below 50,000 Euro) and cage robots (separated through a fence) from the total
number of installed robots. All outcome variables in Panel A refer to the year 2018. In Panel B and C,
the outcome variable is the log value added per worker and the share of trained workers around robot
adoption. Columns τ<−1/τ−1,0/τ>0 report results from a pooled regression prior/during/after the event.
In each regression, we control for 10 plant size dummies, the share of highly qualified workers, the year
of foundation, as well as industry fixed effects. Further, we restrict the sample to first-time adopters that
have non-missing values in any of the outcome variables in 2018 (for Panel A) or at least one observation
in all year pools b ∈ {−4,−2;−1, 0; 1, 2} (for Panel B and C). Standard errors are robust and clustered
at the plant level.

the returns to automation to be sufficiently high to offset the higher costs of displacement.

However, we do not find evidence that works councils change the purpose or even hinder

the adoption of robots, as we do not observe systematic differences in the type (process

vs. product improvement) and the probability of using or newly adopting robots (see
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Appendix Table E.2).

In Section 4, we showed how works councils reduce turnover during automation events.

Previous papers in the literature, such as Acemoglu et al. (2023), have documented that

robot adopting firms tend to grow. An interesting open question, therefore, is how labor

representation might affect the total firm employment effects of automation and the rela-

tive balance between increased retention and new hires. In the Appendix (Table E.3), we

investigate this issue with three main findings: First, there is no difference in the total

employment effects among adopters by works council status (Panel A). Second, the share

of plants with unfilled vacancies does not differ by works council status over the course

of automation (Panel B). Third, automating firms with worker representation engage in

significantly fewer new hires around the event of adoption compared to automating firms

without representation (Panel C). In combination with our findings regarding retention,

these patterns indicate that works councils lead plants to rely more on their existing work-

force rather than new hires when adopting new technologies – without hindering overall

firm growth.

Finally, we shed light on whether works councils accompany the increased retention

during automation events as documented in Section 4 by increasing re-training efforts

among their workforce. Once again, we leverage the time dimension, using periods pre-

and post-adoption as well as contemporaneous to adoption. Column 1 in Panel C of Ta-

ble 3 demonstrates that firms with works councils have a 5 percentage point (statistically

insignificant) higher share of workers who receive training in a given year, consistent with

previous findings on plants with worker representation generally providing more training

(Stegmaier, 2012; Mohrenweiser, 2022).15 Notably, during automation events, the gap

in the share of trained workers increases sharply to 14.5 percentage points and returns

approximately to previous levels thereafter. When distinguishing between low- and high-

skilled workers participating in training (Appendix Table E.4), we find that the spike in

training provision in plants with works council is, in absolute terms, similar across worker

groups. This increase is economically meaningful given that, pre-adoption and across all

plants, only 18% of low-skilled workers receive training. This pattern might not only re-

flect the increased willingness of firms to supply training, but also a higher propensity of

workers to take up firm-specific training, as the increased job security makes investments

into firm-specific skills more worthwhile (Freeman and Lazear, 1995).These findings are
15Relatedly, Dustmann and Schönberg (2012) demonstrate that unions can increase training by com-

pressing the wage distribution.
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also related to the work by Battisti et al. (2023), who show that technological and organi-

zational change at the establishment level is, on average, associated with higher retraining

efforts.

7 Conclusion

We find that work councils moderate adverse effects from automation events on incumbent

workers by reducing separations. Older workers, who have limited adjustment possibilities,

benefit the most in terms of employment. When replacing workers is costly for firms – as

reflected by high plant-specific labor market tightness – separation and retention effects

of automation in plants with and without work councils converge as the objectives of

works councils and the management are more closely aligned. We also observe that works

councils prevent wage cuts for workers with a high share of routine-manual tasks, which

are prone to automation.

Robot adoption is associated with larger productivity growth and increased training

efforts in the presence of worker representation. The fact that rising productivity goes

hand in hand with retaining and retraining incumbent workers supports the idea that

works councils facilitate cooperative solutions when the interests of capital owners and

workers diverge (Müller-Jentsch, 1995). Understanding how other labor market institu-

tions might alter the direction and consequences of new (automation) technologies remains

an important topic for future research.
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Appendix

Organized Labor Versus Robots?
Evidence from Micro Data

Sebastian Findeisen, Wolfgang Dauth, Oliver Schlenker

A Plant Statistics

Table A.1: Summary statistics by adopter status

Early adopters New adopters Never users
(manufacturing only)

Log employment 4.65 4.45 3.19
(1.68) (1.63) (1.53)

Share high qualified workers 11.44 11.50 10.95
(11.64) (12.33) (14.98)

Robots/worker 0.15 0.08 .
(0.66) (0.17) (.)

Robots 44.03 3.53 .
(384.78) (10.09) (.)

Log total investment 13.46 13.02 11.73
(2.26) (2.11) (2.08)

Log VA per worker 11.14 10.98 10.80
(0.63) (0.78) (0.73)

Founding year 1990.78 1993.80 1996.03
(13.28) (14.24) (12.40)

Vacancies to fill 0.54 0.51 0.44
(0.50) (0.50) (0.50)

Manufacturing (excl. auto.) 0.67 0.62 0.96
(0.47) (0.49) (0.20)

Automotive 0.10 0.07 0.04
(0.30) (0.26) (0.20)

Non-manufacturing 0.17 0.27 0.00
(0.37) (0.45) (0.00)

Works council 0.52 0.43 0.24
(0.50) (0.50) (0.43)

Observations 280 215 2221

Notes: This table presents mean values and standard deviations for plants in 2018, categorized by their robot
adoption status. Early adopters are plants that reported using robots in 2014. New adopters are plants that
did not use robots in 2014 but reported using them at least once in the subsequent years (2015 to 2018).
Never adopters are plants that did not use robots in any year between 2014 and 2018. Vacancies refers to the
proportion of plants reporting open positions that could not be filled. All variables below are also expressed as
shares, reflecting either the sector composition (classified according to WZ08) or the proportion of plants with
a works council. Sector shares do not sum to 1 because of missing industry classifications.
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B Results for the Entire Workforce (Including Non-Production)

Figure B.1: Employment effect of automation in plants with vs. without works council – entire
workforce

(a) Retention probability (b) Employment probability

(c) Retention probability (by age) (d) Employment probability (by age)

(e) Retention probability (by LMT) (f) Employment probability (by LMT)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ employment outcomes.
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C Difference-in-Difference Results

Figure C.2: Employment effect of automation in plants with vs. without works council – by
age

(a) Retention probability (young) (b) Retention probability (old)

(c) Employment probability (young) (d) Employment probability (old)

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the initial
plant (in Panel (a) and (b)) or anywhere (in Panel (c) and (d)). Employment is measured as the probability of
being employed at least one day per calendar year. All sub-figures display the difference-in-differences estimates
obtained from Equation 1, separately for workers in plants with and without works council. Workers are divided
into groups based on whether they are below 55 (Panel (a) and (c)) or between 55 and 60 (Panel (b) and (d))
in the year of robot adoption. Vertical bars indicate 90% confidence intervals based on robust standard errors
clustered at the matching pair level. The sample of workers is restricted to individuals aged 25 to 60 in the year
of adoption, being employed at least two years prior to robot adoption in the plant, and working in production
(i.e. Blossfeld occupations 2-5). To ensure comparability, workers in robot-adopting plants are matched to
similar counterparts in non-adopting plants. The matching process is described in detail in Section 3.
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Figure C.3: Employment effect of automation in plants with vs. without works council – by
occupation

(a) Retention probability (not routine-manual) (b) Retention probability (routine-manual)

(c) Employment probability (not routine-manual) (d) Employment probability (routine-manual)

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the initial
plant (in Panel (a) and (b)) or anywhere (in Panel (c) and (d)). Employment is measured as the probability of
being employed at least one day per calendar year. All sub-figures display the difference-in-differences estimates
obtained from Equation 1, separately for workers in plants with and without works council. Workers are
divided into groups based on whether they hold a routine-manual occupation (RMW), thus belong to Blossfeld
occupation 2, (Panel (a) and (c)) or not (Panel (b) and (d)) in the year prior to robot adoption. Vertical bars
indicate 90% confidence intervals based on robust standard errors clustered at the matching pair level. The
sample of workers is restricted to individuals aged 25 to 60 in the year of adoption, being employed at least
two years prior to robot adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To
ensure comparability, workers in robot-adopting plants are matched to similar counterparts in non-adopting
plants. The matching process is described in detail in Section 3.
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Figure C.4: Employment effect of automation in plants with vs. without works council – by
labor market tightness (25th percentile)

(a) Retention probability (slack) (b) Retention probability (tight)

(c) Employment probability (slack) (d) Employment probability (tight)

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the initial
plant (in Panel (a) and (b)) or anywhere (in Panel (c) and (d)). Employment is measured as the probability of
being employed at least one day per calendar year. All sub-figures display the difference-in-differences estimates
obtained from Equation 1, separately for workers in plants with and without works council. Workers are divided
into groups based on plants’ local labor market tightness (LMT) in the year prior to adoption (cutoff is the 25th
percentile). This measure is obtained from Bossler and Popp (2024) and defined as the ratio of the number of
vacancies to job seekers at the occupation-region level, weighted by plants’ employment shares. Vertical bars
indicate 90% confidence intervals based on robust standard errors clustered at the matching pair level. The
sample of workers is restricted to individuals aged 25 to 60 in the year of adoption, being employed at least
two years prior to robot adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To
ensure comparability, workers in robot-adopting plants are matched to similar counterparts in non-adopting
plants. The matching process is described in detail in Section 3.
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Figure C.5: Employment effect of automation in plants with vs. without works council – by
labor market tightness (50th percentile)

(a) Retention probability (slack) (b) Retention probability (tight)

(c) Employment probability (slack) (d) Employment probability (tight)

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the initial
plant (in Panel (a) and (b)) or anywhere (in Panel (c) and (d)). Employment is measured as the probability of
being employed at least one day per calendar year. All sub-figures display the difference-in-differences estimates
obtained from Equation 1, separately for workers in plants with and without works council. Workers are divided
into groups based on plants’ local labor market tightness (LMT) in the year prior to adoption (cutoff is the 50th
percentile). This measure is obtained from Bossler and Popp (2024) and defined as the ratio of the number of
vacancies to job seekers at the occupation-region level, weighted by plants’ employment shares. Vertical bars
indicate 90% confidence intervals based on robust standard errors clustered at the matching pair level. The
sample of workers is restricted to individuals aged 25 to 60 in the year of adoption, being employed at least
two years prior to robot adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To
ensure comparability, workers in robot-adopting plants are matched to similar counterparts in non-adopting
plants. The matching process is described in detail in Section 3.
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D Main Sensitivity and Robustness Checks

Figure D.6: Employment effect of works council by workers’ characteristics – sensitivity using
days employed

(a) Retention (b) Employment

(c) Retention (by age) (d) Employment (by age)

(e) Retention (by occupation) (f) Employment (by occupation)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption
in plants on workers’ employment outcomes. Employment is measured as the number of days employed per
calendar year, either at the initial plant (in Panel (a), (c), and (e)) or anywhere (in Panel (b), (d), and (f)).
All sub-figures display the triple differences (DiDiD) estimates obtained from Equation 2, either for the whole
sample or separately estimated across worker groups. In Panel (c) and (d), workers are divided into groups
based on whether they are below 55 or between 55 and 60 in the year of robot adoption. In Panel (e) and (f),
the division is based on workers’ occupation in the year prior to adoption. Routine manual workers (RMW) are
defined as being in Blossfeld occupation 2.

39



Figure D.7: Employment effect of works council by labor market tightness – sensitivity using
days employed

(a) Retention (25th percentile) (b) Employment (25th percentile)

(c) Retention (50th percentile) (d) Employment (50th percentile)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in plants
on workers’ employment outcomes. Employment is measured as the number of days employed per calendar year,
either at the initial plant (in Panel (a) and (c)) or anywhere (in Panel (b) and (d)). All sub-figures display
the triple differences (DiDiD) estimates obtained from Equation 2, either for the whole sample or separately
estimated across worker groups. Workers are divided into groups based on plants’ local labor market tightness
(LMT) in the year prior to adoption (cutoff is the 25th percentile in Panel (a) and (b), 50th percentile in
Panel (c) and (d)). This measure is obtained from Bossler and Popp (2024) and defined as the ratio of the
number of vacancies to job seekers at the occupation-region level, weighted by plants’ employment shares. The
dashed vertical line marks the event of robot adoption. Vertical bars indicate 90% confidence intervals based
on standard errors clustered at the matching pair level. The sample of workers is restricted to individuals aged
25 to 60 in the year of adoption, being employed at least two years prior to robot adoption in the plant, and
working in production (i.e. Blossfeld occupations 2-5). To ensure comparability, workers in robot-adopting
plants are matched to similar counterparts in non-adopting plants. The matching process is described in detail
in Section 3.
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Figure D.8: Retention effect of automation in plants with vs. without works council – robustness

(a) Retention probability (baseline) (b) Retention probability (size)

(c) Retention probability (investment type: real
estate) (d) Retention probability (investment type: ICT)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ retention probability. Retention is measured as the probability of being employed at least one
day per calendar year at the initial plant. Panel (a) displays the triple differences (DiDiD) estimates obtained
from Equation 2. Panel (b) augments the regression equation by including a dummy variable that equals one
if a worker is among the top 25th percentile employed at the largest plants regarding employment size, which
is then interacted with event-year indicators. In Panels (c) and (d), the dummy variable equals one if a plant
reports having additionally invested in real estate or information and communication technologies (ICT) in the
year of robot adoption. The dashed vertical line marks the event of robot adoption. Vertical bars indicate 90%
confidence intervals based on standard errors clustered at the matching pair level. The sample of workers is
restricted to individuals aged 25 to 60 in the year of adoption, being employed at least two years prior to robot
adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To ensure comparability,
workers in robot-adopting plants are matched to similar counterparts in non-adopting plants. The matching
process is described in detail in Section 3.
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Figure D.9: Employment effect of automation in plants with vs. without works council – ro-
bustness

(a) Employment probability (baseline) (b) Employment probability (size)

(c) Employment probability (investment type:
real estate)

(d) Employment probability (investment type:
ICT)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ employment probability. Employment is measured as the probability of being employed
at least one day per calendar year. Panel (a) displays the triple differences (DiDiD) estimates obtained from
Equation 2. Panel (b) augments the regression equation by including a dummy variable that equals one if a
worker is among the top 25th percentile employed at the largest plants regarding employment size, which is
then interacted with event-year indicators. In Panels (c) and (d), the dummy variable equals one if a plant
reports having additionally invested in real estate or information and communication technologies (ICT) in the
year of robot adoption. The dashed vertical line marks the event of robot adoption. Vertical bars indicate 90%
confidence intervals based on standard errors clustered at the matching pair level. The sample of workers is
restricted to individuals aged 25 to 60 in the year of adoption, being employed at least two years prior to robot
adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To ensure comparability,
workers in robot-adopting plants are matched to similar counterparts in non-adopting plants. The matching
process is described in detail in Section 3.
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E Further Outcomes and Mechanisms

Table E.2: Works councils and likelihood of robot adoption and investment

Robot adopter Robot user Log total investment
(New adopters vs. (All plants) (New adopters)

never users)

Works council -0.409 -0.093 0.337
(0.407) (0.579) (0.469)

Mean of Y 1.60 3.60 13.26
SD of Y 12.54 18.64 2.00
R-squared 0.05 0.12 0.61
Observations 11,888 12,150 118

Notes: This table shows results from regressions of various outcome variables on an indicator whether a plant
has a works council. Columns 1 and 2 show the results for the probability of newly adopting robots (between
2015 and 2018, Column 1) and having robots installed at any point in time (Column 2). The outcome in column
3 is the log of total investment in the year of robot adoption. In each regression, we control for 10 plant-size
dummies, the share of highly qualified workers, the year of foundation, as well as industry fixed effects. For
columns 1 and 2, we restrict the sample to all firms in the 2019 wave of the Establishment Panel with non-
missing information, and for column 3 to all first-time robot-adopting plants. Standard errors are robust and
clustered at the plant level.
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Table E.3: Works councils, robot adoption and employment changes

Panel A: Log employment < τ−1 τ−1,0 > τ0

Works council 0.010 -0.016 -0.056
(0.053) (0.053) (0.051)

Mean of Y 4.48 4.43 4.35
SD of Y 1.48 1.58 1.56
R-squared 0.97 0.97 0.97
Observations 288 271 258

Panel B: Vacancies < τ−1 τ−1,0 > τ0

Works council -11.559 -6.629 -5.767
(9.748) (9.048) (8.801)

Mean of Y 47.37 55.63 47.06
SD of Y 50.01 49.77 50.01
R-squared 0.11 0.11 0.18
Observations 287 271 258

Panel C: Hires < τ−1 τ−1,0 > τ0

Works council -3.413 -7.228∗∗∗ -3.697
(2.344) (2.473) (3.081)

Mean of Y 10.83 13.96 11.52
SD of Y 21.43 28.72 21.36
R-squared 0.53 0.61 0.56
Observations 215 207 185

Notes: This table shows results from regressions of log employment (Panel A), the reporting of unfilled vacancies
(Panel B), and the number of new hires in the first half of the calendar year (Panel C) on an indicator whether a
plant has a works council. Columns τ<−1/τ−1,0/τ>0 report results from a pooled regression prior/during/after
the event of robot adoption. In each regression, we control for 10 plant-size dummies, the share of highly
qualified workers, the year of foundation, as well as industry fixed effects. Further, we restrict the sample to
first-time adopters that have at least one observation in all year pools b ∈ {−4,−2;−1, 0; 1, 2}. Standard errors
are robust and clustered at the plant level.
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Table E.4: Works councils, robot adoption and the provision of training

Panel A: Before adoption All workers In simple tasks In qualified tasks

Works council 4.922 12.165 8.070
(5.906) (7.623) (6.365)

Mean of Y 29.16 18.27 37.43
SD of Y 32.19 36.46 41.92
R-squared 0.14 0.19 0.17
Observations 264 198 257

Panel B: During adoption All workers In simple tasks In qualified tasks

Works council 14.536∗∗∗ 15.190∗∗ 13.450∗∗

(5.440) (6.355) (6.074)

Mean of Y 30.30 20.59 37.18
SD of Y 31.51 37.62 36.34
R-squared 0.15 0.17 0.19
Observations 266 199 250

Panel C: After adoption All workers In simple tasks In qualified tasks

Works council 6.960 1.970 9.472
(5.539) (6.390) (6.340)

Mean of Y 26.62 22.79 30.57
SD of Y 32.41 39.20 39.60
R-squared 0.12 0.17 0.13
Observations 249 185 238

Notes: This table shows results from regressions of the share of trained workers (all workers, workers performing
simple/qualified tasks) on an indicator whether a plant has a works council. Simple (qualified) tasks refer to the
requirement of workers performing them having no (at least a) vocational degree. The panels report results from
a pooled regression prior (τ<−1), during (τ−1,0), and after (τ>0)the event of robot adoption. In each regression,
we control for 10 plant-size dummies, the share of highly qualified workers, the year of foundation, as well as
industry fixed effects. Further, we restrict the sample to first-time adopters that have at least one observation
in all year pools b ∈ {−4,−2;−1, 0; 1, 2}. Standard errors are robust and clustered at the plant level.
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